

A Preliminary Report Out on the 2021 DTC UFS Evaluation Metrics Workshop

Tara Jensen NCAR/RAL and DTC

Geoff Manikin NOAA/NCEP/EMC

UFS Webinar Series - April 8, 2021

Reproducible and documented methods for evidence-based decision making

- <u>Identify goals</u> of verification and <u>questions</u> to be answered
- **Identify and collect** observations that can be used to answer the questions of interest
 - \Box If possible, characterize <u>uncertainty</u> in the observations
- <u>Specify type of forecasts and type of observations</u> and how they can/should be matched
- **Identify multiple verification attributes** that can provide answers to the questions of interest
- Identify a standard of comparison that provides a reference level of skill (e.g., persistence, climatology, reference model)

Motivation - Stages and Gates

UFS view of R2O: As a repeated, narrowing stage and gate process

NCAR

NOAA

NOAA

Categories: Important to All, Global, Regional/CAM, S2S, Process Oriented, Coupling Validation, Marine, Tropical, ACC, Land/Hydro, Upper Air and Space

•Ensembles/Probabilistic measures were embedded in each sheet

•Example Metrics Worksheet - Atmospheric Chemistry and Composition (ACC)

Forecast Field	Specialty	Vertical Attribute	emporal Attribut	Validation Source	Priority	Maturity	Deterministic Methodology	Determinisit
				DRAFT IN PROGRESS				
e.g. Aerosol Optical D	Compositon	Surface	1-hr, 6-hr, 24-hr T	Stage IV 1-hr, 6-hr, 24-hr	Precip		Grid-to-Grid	CSI, BIAS, FSS, POD, FAR, AUR, Perform
Aerosol optical depth		total column	1hr, 24hr, monthl	AERONET L1.5, L2.0	1	1	Grid-to-observations	CSI, BIAS, FSS, POD, FAR, AUR, Performe
Aerosol optical depth		total column	daily	MODIS, VIIRS	1	1	Grid-to-observations,	CCSI, BIAS, FSS, POD, FAR, AUR, Performe
Ozone		surface	1-hr, 8-hr, daily m	EPA AIRNOW, AQS	1	1	Grid-to-observations	CSI, BIAS, FSS, POD, FAR, AUR, Performe
PM2.5		surface	1-hr, 24-hr, daily max,ave	EPA AIRNOW, AQS,	1	1	Grid-to-observations	CSI, BIAS, FSS, POD, FAR, AUR, Perform
PBL Depth	Environmental/Air O	Du Top of PBL	Instantaneous	WSR-88D, METAR Ceilometer, RAOB, ACARS, BL Profilers	1	2	Grid-to-Grid, Grid-to-Point	RMSE, BIAS, Corr
Downward Shortwave Radiation	Air Quality/Energy	Surface	Instantaneous/Av	ARM, Surfrad (Oak ridge ameriflux)	1	1	Grid-to-Point	RMSE,
Downward UV Radiation	Air Quality/Energy	Surface	Instantaneous/Av	ARM, Surfrad (Oak ridge ameriflux), AlrNow UV r	1	1	Grid-to-Point	RMSE,
Aerosol optical depth		total column	15 min	GOES, Himawari, Meteosat, GEMS	2	2		
Aerosol index			daily	OMPS, OMI, TROPOMI	2	2		
smoke, ash plume height			daily	MISR, CALIPSO, MPLNET	1	1		
			1-hr, 24-hr,					

Workshop Overview

- **Day 1: Opening Plenary** Motivation, Pre-workshop Surveys, Goals **Breakout Group Session 1:** Short Range Weather (SRW)
- Day 2: Breakout Group Session 2: Medium Range Weather (MRW)
 Breakout Group session 3: Subseasonal to Seasonal (S2S)
 Polling to Prioritize Metrics by UFS Application
- Day 3: Report Out on Poll Results and Discussion of How to Interpret Breakout Group Session 4: How to Metrics to Development Gates Final Wrap-up including Next Steps

3 Pre-Workshop Surveys - **15** hours - **3** days - Live Polling - Lots of Discussion - Still not enough!!!

Participant Overview

Registered Participants: 315 **Attended:** Approximately 200 for the first plenary, 75 for the last

Number of Breakouts:

NCAR

SRW - 6 MRW - 5 + DA S2S - 6 Assigning to Gates - 7 Largest Breakout Group - 45 Smallest Breakout Group - 7

DOD: NRL, ONR, USAF

DOE: PNNL

International: Bureau of Meteorology, BC Hydro, DLR, Environment and Climate Change Canada, Int. GEWEX Project Office, Universidad Nacional Autonoma de Mexico, University of Iceland, University of Twente

NOAA: AFS, AOML, ARL, AWC, CPC, CPO, CSDL, CSL, EMC, ERT, GFDL, GLERL, GSL, MDL, NCEI, NESDIS, NHC, NOS, NSIDC, NSSL, OPC, OSTI, OWP, PMEL, PSL, RegHQs, SPC, SWPC, WFOs, WPC, WPO

WPC

Other: DTC, NASA, NCAR, USNIC, CT DOE/Env. Protection, ID DO Env. Qual., MS DO Env. Qual., PA DO Env. Protection, South Coast AQ Mgmt District

Private: Citadel LLC, FirstEnergy, Leidos/JSC Space Radiation Analysis Group, Tsunami Consultant, Systems Research Group, The Climate Corporation, The Weather Company/IBM

University: George Mason University, North Carolina State University, Purdue University, SUNY-Albany, University of Arizona, University of Colorado, University of Connecticut, University of Houston, University of Illinois at Urbana Champaign, University of Maryland, University of Miami, University of Michigan, University of Missouri, University of Oklahoma, University of Texas at Austin, University of Wisconsin-Madison, University of Wisconsin-Milwaukee, Virginia Tech

Workshop Support

□Organizers: Tara Jensen (NCAR and DTC), Geoff Manikin (EMC), Burkely Gallo (SPC), Jason Levit (EMC), Jack Settlemaier (SRH), Sarah Lu (U Albany), Linden Wolf (OSTI), Deepthi Achuthavarier (OSTI), Yan Xue (OSTI), Jason Otkin (U Wisc-CIMSS), Mike Baldwin (Purdue), Dave Turner (GSL), and Cristiana Stan (GMU)

- □UFS V&V Cross-Cutting Team
- **EMC MEG and Verification Teams**
- □All of the Breakout Facilitators
- □ DTC administrative support and UCAR Multimedia Services

Funded by: UFS R2O Project - Hosted by: DTC

Survey 1 Methodology

- Took place in October 2020
- Focused on the Working Groups of UFS
 - Short Range Weather (SRW); Medium Range Weather (MRW); Subseasonal to Seasonal (S22)
 - Air Quality/Atmospheric Composition
 - Coastal

NCAR

- Hurricane
- Marine and Cryosphere
- Space Weather
- Started from 2018 Workshop findings
- Relied on Subject Matter Expertise
- Used web-based literature searches

NOAA

Please subjectively rate the relative importance/relevance of potential verification metrics for each SURFACE/SENSIBLE WEATHER PARAMETER for the short-range weather (SRW) UFS application.

Survey 2 Methodology

At what frequency of short-range forecast output do the following Upper Level fields need to be verified? **Please select only 1-2 options per field**.

	Sub- hourly	Hourly	Every 3 hours	Every 6 hours	Every 12 hours	Daily	Other
Temperature							
Geopotential Height							
U/V Wind							
Specific Humidity							

Which Convective Available Potential Energy (CAPE) computation is most critical?

O Surface-based (parcel originates in lowest 10 m)

NCAR

- Mixed Layer (lift average of the 0-90 mb above ground layer)
- Most Unstable (lift most unstable layer in the lowest 180 mb above ground)
- Most Unstable (lift most unstable level in the lowest 300 mb above ground)
- O Low-Level (computed over the 0-3 km above ground layer)

- Took place mid-December to mid-January
- Given the fields from Survey 1, was time to delve into specifics of those fields
- Organization changed from Survey 1
- Marine and Coastal were merged and Cryosphere broken out
- Subseasonal broken out from MRW

Sections:

- Heights and Layers where should we be assessing this field?
- Verification frequency how frequently should we assess this field?
- Temporal attributes what accumulations or maxima should we consider?
- Also asked questions through write-in fields

2021 DTC UFS EVALUATION METRICS WORKSHOP

Survey 3 Methodology

- This survey was to answer remaining questions about the specifics of verification for each field
 - Metrics for deterministic, probabilistic, and ensemble usage
 - Thresholds and Verification domains
 - Observation sources
- One complication subject matter experts in different fields may not be as familiar with verification and validation specifics as they are with their application
- For some surveys, questions about nature of the fields, the spatial and temporal errors, and the variability of peak values across the globe were asked to allow statisticians to help suggest metrics to use

Plea	ase indi potenti	cate which metric for verifying deterministic forecasts of 500-hPa ial height is most critical.
С	Anoma	ly Correlation
С	RMS Er	ror, Mean Error Bias
С	RMS Er	ror, Multiplicative Bias
С	S1 Scor	re
С	Ratio of	f Standard Deviation (Fcst/Analysis)
С	Inner Q	uartile Range
C	Other:	For verification of deterministic, ensemble, and probabilistic 500-hPa height forecasts, what should be the primary validation source? Your answer should be consistent with the metrics chosen earlier in this section.
		O ECMWF Analysis (grid-to-grid)
		O 3DRTMA (grid-to-grid)
		O RAOB data (grid-to-obs)
		O Other:

ARTMENT C

Plenary Poll

Plenary1 - What do you think is the most important issue to consider when defining metrics?

Breakout Groups

MONDAY - 2/22

Breakout Groups 1 - SRW

1.1 AQ/Comp - SRW

NCAR

1.2 Hurricane - SRW

1.3 Marine, Coastal, and Cryosphere - SRW

1.4 Land and Hydro - SRW

1.5 Space and Aviation - SRW

1.6 High Impact Weather (Precip/Severe) - SRW

Monday and Tuesday Breakout Groups:

Each group:

- Prioritized Upper Level and Sensible Weather from "temporal parent survey" plus their own application metrics
- Identified which metrics / validation sources / regions that still need clarification and resolve uncertainty

Wednesday Breakout Groups:

Each group discussed the stages and gates identified by UFS and how to assign prioritized metrics to them

1.0 Support	TUESDAY - 2/23	WEDNESDAY - 2/24
	Breakout Groups 3 - Subseasonal and Seasonal	Breakout Groups 4 - How to Assign Metrics to Ga
TUESDAY - 2/23		
Breakout Groups 2 - MRW	3.1 AQ/Comp - S2S	4.1 SRW Gates - Blank
	3.2 Hurricane - S2S	4.2 SRW Gates - Wolff
2.1 AQ/Comp - MRW	3.3 Marine, Coastal, and Cryosphere - S2S	4.3 SRW Gates - Dawson
2.2 Hurricane - MRW	3.4 Land and Hydro - S2S	4.4 SRW Gates - Harrold
2.3 Marine, Coastal, and Cryosphere - MRW	3.5 General Circulation Phenomena (MJO, ENSO, N	4.5 MRW Gates - Gottschalck
2.4 Land and Hydro - MRW	3.6 General Circulation Phenomena (MJO, ENSO, N	4.6 MRW Gates - Rood
2.5 Data Assimilation	3.7 Weather Extremes (Drought, Fire, Temp Extreme	4.7 MRW Gates - Tolman
2.6 High Impact Weather (Precip/Severe) - MRW	3.8 Weather Extremes (Drought, Fire, Temp Extreme	4.8 Seasonal Gates - Janiga
2.0 Support	3.0 Support	4.9 Seasonal Gates - Kim
		4.0 Support

2021 DTC UFS EVALUATION METRICS WORKSHOP

Breakout Online Polling

COMMON-SRW-1: Please indicate which prioritized SRW PRESSURE LEVEL fields are important for High Impact Weather (Precip/Severe) prediction on SRW timescales.

COMMON-SRW-1: Please indicate which PRESSURE LEVEL fields are important fo Weather (Precip/Severe) prediction on SI	prioritized SRW 0 3 4 r High Impact RW timescales.
Voting locked	🕆 Unlock voting
Geopotential Height - 500 hPa	
Temperature - 850 hPa	79%
Wind - 850 hPa	79%
Specific Humidity - 850 hPa	50%
Specific Humidity - 925 hPa	50%
None 6%	

COMMON-SRW-2: Please indicate which prioritized SRW SENSIBLE WEATHER fields are important for High Impact Weather (Precip/Severe) prediction on SRW timescales.

COMMON-SRW-2: Please indicate which prioritized SI SENSIBLE WEATHER fields are important for High Imp Weather (Precip/Severe) prediction on SRW timescale	RW 033 pact ps.
Voting locked	🖻 Unlock voting
Temperature - 2m	79%
Dewpoint 2m	73%
Sea Level Pressure 30%	
Wind - 10m 64	4%
Wind Speed - 10m 48%	
Precipitation	82%
MLCAPE	79%
MLCIN 36%	
None 0%	

COMMON-SRW-3: Are the metric attributes (e.g. statistics, thresholds, temporal attributes, regions, etc) identified in the Surveys acceptable to use for High Impact Weather (Precip/Severe) prediction at SRW timescales? NOAA

g. statistics, lentified in the ather
🖻 Unlock voting
69%

Candidate Metrics Polling

TUESDAY - 2/23 Application Metrics Polling

ALL POLLS are at: https://app.sli.do/event/vccfxvzl

NCAR

- Polls were generated from the Candidate Metrics Spreadsheets used in the Breakout Groups
- Generally, one poll was generated for each application
- For MRW and S2S, the poll was split to make it easier to take
- Also added polls for Aviation (at the request of AWC), Data Assimilation, and Land

NOAA

Example of Results shown in later slides

Candidate Metrics Polling

Please Rank the following fields for the Data Assimilation Application. You MUST GIVE A RANKING TO ALL fields before you can submit.

Select options from the list below.

Analysis error bias including covariance matrix, prior and posterior RMSE/bias departures from obs

O Background error bias including covariance matrix, RMSE/bias departures from obs

Observation errors are diagnosed and specified including representativeness and bias correction parameters

Observational Impact - E/FSOI, OSE

NCAR

Additional statistics computed from H(x) and obs matched pairs - scorecards by radiance channel including RMSEs), fit to obs plots

Forecast and analysis "activity diagnostics"

O Dropout diagnostics -- ACC score

Analysis increments - mean and STD

1. Background error bias including covariance matrix, RMSE/bias departures from obs 6.64 Analysis error bias including covariance matrix, prior and posterior RMSE/bias departures from obs 6.43 Observation errors are diagnosed and specified including representativeness and bias correction parameters 5.18 Analysis increments - mean and STD 4. 4.82 Observational Impact - E/FSOI, OSE 5. 4.11 6. Additional statistics computed from H(x) and obs matched pairs - scorecards by radiance channel including RMSEs), fit to obs plots 3.57 7. Forecast and analysis "activity diagnostics" 3.39 Dropout diagnostics - ACC score 8. 1.86

ND ATMOSA

NOAA

Sen

- Following the three rounds of surveys, we had data for each UFS application covering fields, metrics, temporal attributes, key thresholds, regions, validation source, and verification approach
- **Phase 1** of the synthesis (**pre-workshop**) involved the creation of worksheets with all of the data aggregated and gaps identified, to serve as a starting point for the breakout sessions
- Phase 2 of the synthesis (during workshop) involved updating the aggregated data to account for changes made and new fields added during the workshop breakout sessions to prepare for the workshop voting
- Phase 3 of the synthesis (post workshop) involved reorganizing the aggregated data to match the voting results
- Phase 3 also involved efforts to provide alternate rankings of prioritized metrics to represent the needs of smaller but important groups of customers and developers

Data Synthesis

- A worksheet for each UFS application was built to collect information
- The initial tab contained a compilation of data from each round of surveys

	A	B	С	D	E	F	G	н	1	J	К	L	М	N	0
1	FIELD	LEVEL	DETERMINISTIC	ENSEMBLE METRIC	PROBABILISTI C METRIC	TEMPORAL ATTRIBUTE	NOTABLE THRESHOLDS	REGION	VERIFICATI ON APPROACH	VALIDATION	CLIMATOLOGY SOURCE	SPATIAL MATCHING	STATISTIC available in METplus?	FILE FORMAT supported in METplus?	COMMENTS/DISCUSSION TOPICS
10	TC CHARACTERISTICS (TCC)				1										
11	Intense Precipitation	Surface	ETS,FreqBias	ETS of Ens Mean	Reliability Diagram	Every 6h or Every 24h	0.25 and 0.5" for 6h 1 and 2" for 24h	All basins separate	grid-to-grid, grid-to-obs	tie MRMS QPF, Stage IV					break tie between MRMS QPF and Stage IV
12	Rapid Intensification (Decay) Rate (MSLP)	Surface	RMSE, Bias	RMS of Ens Mean + Spread		Mostly every 12hrs, some 6hr	MSLP breaks (1000,980)	All basins separate	grid-to-grid, grid-to-obs	ECMWF Analysis, NHC Best Track					need to identify if RI should be evaluated both by MSLP and Wind Speed; also clarify if evaluation is every 6 or 12 hours
13	Rapid Intensification (Decay) Rate (Wind Speed)	Surface	RMSE, Bias	RMS of Ens Mean + Spread		Mostly every 12hrs, some 6hr	SS Cats (TS, Hurr, Major)	All basins separate	grid-to-grid, grid-to-obs	ECMWF Analysis, NHC Best Track					Settle Columns F,G
14	Radius of Maximum Winds (RMW)	10 m	RMSE, Bias	RMS of Ensemble Mean + Spread		Every 6 h		All basins separate (Atlantic is the basin with consistent recon data)	grid-to-obs	NHC operational estimates, Recon Vortex messages					
15	Maximum extent of winds (wind radii)	10 m	Bias	RMS of Ensemble Mean + Spread		Every 3h	34,50,64 kt	All basins separate (or aggregate)	grid-to-obs grid-to-grid	NHC Best Track, METARS, ECMWF Analysis					
16	Wave Height	surface													identify if wave height is critical and if so, get all meta-data
17	TC INTENSITY (TCI)														
18	Max Wind Speed	Sfc/10-m	RMS, Bias, Perf Diagram	RMS of Ensemble Mean + Spread		Every 6h		All basins separate	grid-to-grid, grid-to-obs	ECMWF, NHC Best Track data					ask if thresholds are the same as for radius of max wind criteria
19	TC TRACK (TCT)														
20	Absolute Track Error	Surface	Average NM	Avg Error of Ensemble Mean + Spread		Every 6h	65kt storms		grid-to-obs	Best Track		SRW - 50 or 100km suggested; MRW/S2S - greater distance			ask if evaluation should be performed for each basin separately, determine if 50-100km spatial matching is appropriate for MRW
21	Along Track Error	Surface	Average NM	Avg Error of Ensemble Mean + Spread		Every 6h	65kt storms		grid-to-obs	Best Track					ask if evaluation should be performed for each basin separately, determine if 50-100km spatial matching is appropriate for MRW
22	Cross Track Error	Surface	Average NM	Avg Error of Ensemble Mean + Spread		Every 6h	65kt storms		grid-to-obs	Best Track					ask if evaluation should be performed for each basin separately, determine if 50-100km spatial matching is appropriate for MRW

Hurricane Metrics

Pre-Workshop Data

 Orange and gray shading was used to identify necessary breakout group discussion; orange indicated that the survey voting was extremely close, while gray indicated that the necessary information was not obtained from the surveys

_	A	В	С	D	E	F	G	Н	1	J	К	L	М	N	0
1	FIELD	LEVEL	DETERMINISTIC METRIC	ENSEMBLE METRIC	PROBABILISTI C METRIC	TEMPORAL ATTRIBUTE	NOTABLE THRESHOLDS	REGION	VERIFICATI ON APPROACH	VALIDATION SOURCE	CLIMATOLOGY SOURCE	SPATIAL MATCHING	STATISTIC available in METplus?	FILE FORMAT supported in METplus?	COMMENTS/DISCUSSION TOPICS
10	TC CHARACTERISTICS (TCC)				1										
11	Intense Precipitation	Surface	ETS,FreqBias	ETS of Ens Mean	Reliability Diagram	Every 6h or Every 24h	0.25 and 0.5" for 6h 1 and 2" for 24h	All basins separate	grid-to-grid, grid-to-obs	tie MRMS QPF, Stage IV					break tie between MRMS QPF and Stage IV
12	Rapid Intensification (Decay) Rate (MSLP)	Surface	RMSE, Bias	RMS of Ens Mean + Spread		Mostly every 12hrs, some 6hr	MSLP breaks (1000,980)	All basins separate	grid-to-grid, grid-to-obs	ECMWF Analysis, NHC Best Track					need to identify if RI should be evaluated both by MSLP and Wind Speed; also clarify if evaluation is every 6 or 12 hours
13	Rapid Intensification (Decay) Rate (Wind Speed)	Surface	RMSE, Bias	RMS of Ens Mean + Spread		Mostly every 12hrs, some 6hr	SS Cats (TS, Hurr, Major)	All basins separate	grid-to-grid, grid-to-obs	ECMWF Analysis, NHC Best Track					Settle Columns F,G
14	Radius of Maximum Winds (RMW)	10 m	RMSE, Bias	RMS of Ensemble Mean + Spread		Every 6 h		All basins separate (Atlantic is the basin with consistent recon data)	grid-to-obs	NHC operational estimates, Recon Vortex messages					
15	Maximum extent of winds (wind radii)	10 m	Bias	RMS of Ensemble Mean + Spread		Every 3h	34,50,64 kt	All basins separate (or aggregate)	grid-to-obs grid-to-grid	NHC Best Track, METARS, ECMWF Analysis					
16	Wave Height	surface													identify if wave height is critical and if so, get all meta-data
17	TC INTENSITY (TCI)														
18	Max Wind Speed	Sfc/10-m	RMS, Bias, Perf Diagram	RMS of Ensemble Mean + Spread		Every 6h		All basins separate	grid-to-grid, grid-to-obs	ECMWF, NHC Best Track data					ask if thresholds are the same as for radius of max wind criteria
19	TC TRACK (TCT)														
20	Absolute Track Error	Surface	Average NM	Avg Error of Ensemble Mean + Spread		Every 6h	65kt storms		grid-to-obs	Best Track		SRW - 50 or 100km suggested; MRW/S2S - greater distance			ask if evaluation should be performed for each basin separately, determine if 50-100km spatial matching is appropriate for MRW
21	Along Track Error	Surface	Average NM	Avg Error of Ensemble Mean + Spread		Every 6h	65kt storms		grid-to-obs	Best Track					ask if evaluation should be performed for each basin separately, determine if 50-100km spatial matching is appropriate for MRW
22	Cross Track Error	Surface	Average NM	Avg Error of Ensemble Mean + Spread		Every 6h	65kt storms		grid-to-obs	Best Track					ask if evaluation should be performed for each basin separately, determine if 50-100km spatial matching is appropriate for MRW

New field

Post-Breakout Group Data

 Red was used to denote any resolutions of orange and gray boxes as well as any new fields added during the breakout sessions

	FIELD	LEVEL (S2)	DETERMNISTIC METRIC (S3)	ENSEMBLE METRIC (S3)	PROBABILISTIC METRIC (S3)	TEMPORAL ATTRIBUTE (S2)	NOTABLE THRESHOLDS (S3)	REGION (S3)	VERIFICATION APPROACH (\$3)		
SENSIBLE V	VEATHER										
Temperature		Sfc/2-m	RMS + Bias	RMSE of Ens. Mean + Ensemble Spread		Hourly	0 C, 60 F (when paired with high Td)?	CONUS divided into thirds + Alaska	Grid-to-obs		
Dew Point		Sfc/2-m	RMS + Threshold Bias (do not compute stats for low values)	RMSE of Ens. Mean + Ensemble Spread		Hourly	50, 60, 70 F (possibly 40 and 50 in the west?); need lower threshold for fire wx	CONUS divided into thirds + Alaska	Grid-to-obs		
Sea Level Pr	ressure	Surface				Hourly					
Wind		Sfc/10-m	RMSE + Mean Error Bias	RMSE of Ens. Mean + Ensemble Spread		Hourly		CONUS divided into thirds + Alaska	Grid-to-obs		
Wind Speed		Sfc/10-m	RMS Error + Bias	RMSE of Ens. Mean + Ensemble Spread		Hourly	25, 34, 48 kt (marine) 30 kt (blizzard) 20 (fire wx)	CONUS divided into thirds + Alaska	Grid-to-obs		
Precipitation		Surface	Total Interest (MODE), FSS, and Contingency Table Elements	Performance diagram	Reliability Diagram	Hourly	6h: 0.25", 0.5", 1" (include 0.1" in winter) and 24h: 1" and 2" (include 0.5" in winter)	CONUS divided into thirds + Alaska	Grid-to-grid, grid-to-obs	Items reso	olved
Rainfall Rate		Surface				Hourly					
MLCAPE		Average of 0-90 mb AGL	RMS Error	RMSE of Ens. Mean + Ensemble Spread		Hourly	500, 1000, 2000 (and 250 for low CAPE SVR)	CONUS divided into thirds + Alaska/North America/SPC Convective Outlook Areas	Grid-to-grid, grid-to-obs	-	
MLGIN		Average of 0-90 mb ACL	RMS Error	RMSE of Ens. Mean + Ensemble Spread		Hourly		CONUS divided into thirds + Alaska/North America/SPC Convective Outlook Areas	Grid-to-grid, g rid-to-obs		

NCAR

Live Polling at the Workshop

Ô	Please rank all of the candidate metrics for the UFS Medium-Range Weaner (MRW) application? YOU MUST GIVE A RANKING TO ALL FIELDS before submitting.
1.	Precipitation
Ζ.	2-m Temperatures
3.	10-m U/V Wind
1.	Sea Level Pressure
5.	500 h-Pa Geopotential Heights
6.	2-m Dew Points
7.	Snowfall
8.	850-hPa U/V Wind
9.	850-hPa Temperatures
10.	Tropical Cyclone Intensity
11.	Sea Surface Temperature
12.	Tropical Cyclone Absolute Track Error
13.	500-hPa Height Anomalies
14.	850-hPa Specific Humidity
15.	Tropical Cyclone Genesis
16.	Mixed-Layer CAPE
17.	Precipitation Anomalies
18.	700-hPa Temperatures
19.	2-m Temperature Anomalies
20.	250-hPa U/V Wind
21.	700-hPa Specific Humidity
22,	Tropical Cyclone Intense Precipitation

DTC

22.	Tropical Cyclone Intense Precipitation
23.	Tropical Cyclone Cross Track Error
24.	Tropical Cyclone Along Track Error
25	TC Maximum Extent of Winds (Wind Badii)
20.	
26.	Significant Wave Height
27.	850:200-hPa Wind Shear
28.	Surface Latent Heat Flux
29.	Surface Sensible Heat Flux
30.	TC Radius of Maximum Winds
31.	Marine Surface Wind Speed
32.	200-hPa U/V Wind
33.	Marine Surface Wind Direction
34.	Wave Heights from Tropical Cyclones
35.	0-10 cm Soil Moisture
36.	Sea Ice Concentration
37.	Sea Ice Thickness
38.	200-hPa Temperatures
39.	0-10 cm Soil Temperature
40.	Sea Ice Drift/Velocity
41.	10-40 cm Soil Moisture
42.	925-hPa Ozone
43.	10-40 cm Soil Temperature
44.	50-hPa Ozone

 Every field listed on the aggregate spreadsheet (following the breakout sessions) was added to a Slido poll for that particular application NOAA

 A full ranking was generated by the workshop participants for each survey

AND ATMOSA

NOAA

TMENT C

Live Polling at the Workshop

Please Rank the following fields for the Space - WAM-IPE application. You MUST GIVE A RANKING TO ALL fields before you can submit.

NCAR

15. Electron Energy Flux

DTC

Electron Density (F-Region 2. TEC (Integrated) Plasma Drift 3. **Electron Density** 4. 16. O (F-region) Scintillation (F-Region) Neutral Density 6. 7. Proton Density 20. O+ (F-region) Solar Wind Vp (ground, F-region) 0/N2 Ratio (column integrated) 22. Ceiling (N/A) 10. U/V Winds (250 km) 11. IMF-BZ (ground, F-region) 24. 11. Kp Index (ground, F-region) 25. Visibility (Sfc) 13. f0F2 (peak plasma density - coupled with height) 14. F10.7 (ground, F-region)

- Every field listed on the aggregate spreadsheet was added to a Slido poll for that particular application
- A full ranking was generated by the workshop participants for each survey

Live Polling at the Workshop

Please Rank the following fields for the	e Marine/Cryosphere	TOFS Applications.	You MUST
GIVE A RANKING TO ALL fields before	e you can can and		

NCAR

	10 m Wind Speed
	Surface Currents
	Wave height
	Surface Sea Ice Concentration
	Surface Sea-Ice Edge
	Surface Ice Temperature
	Mixed Layer Depth
	Inundation
0.	Vertical Profile Currents
1.	Tides
1.	Surface Radiation
1.	Surface Salinity
4.	Surface Albedo
5.	Layer depth Sea-Ice Thickness
6.	Vertical Profile Salinity
7.	10 m Turbulence
8.	Layer Depth Permafrost
9.	Surface Chlorophyll
0.	Thermocline Salinity
1.	Vertical Profile Chlorophyll
2	Surface Algae

 Every field listed on the aggregate spreadsheet was added to a Slido poll for that particular application

DOA

- A full ranking was generated by the workshop participants for each survey
- Marine/Cryosphere was tricky, as the longer range UFS plans have this application absorbed by the MRW application; we kept this survey separate but added in some additional marine/cryosphere elements to the MRW survey (this will need future revisitiation)

Live Polling at the Workshop

Please Rank the following fields for the AQ/AC application. Du MUST GIVE A RANKING TO ALL fields before you can submit.

1. Ozone - surface

DTC

NCAR

- 2. PM2.5 surface
- 3. AOD column
- 4. NO2 surface
- 5. PBL depth
- 6. Dust column
- 7. Smoke column
- 8. CO-surface
- 9. Aerosol profile
- 10. Temperature 2m
- 11. Wind 10m
- 12. Wind speed 10m
- 13. NO2 tropospheric column
- 14. CO tropospheric column
- 15. Precipitation Surface
- 16. Dew point 2m
- 17. Relative humidity 2m
- 18. HCHO surface
- 19. Ozone 925 hPa
- 20. HCHO tropospheric column

 Every field listed on the aggregate spreadsheet was added to a Slido poll for that particular application

AND ATMOSA

NOAA

RTMENT OF

 A full ranking was generated by the workshop participants for each survey

NCAR

Live Polling at the Workshop

 Please Rank the following fields or Seasonal Application (FS. You MUST GIVE A RANKING TO ALL fields before you can submit

DTC

- 1. Oceanic Nino Indices (ENSO)
- 2. Precipitation Anomaly at Surface
- 3. Temperature Anomaly at 2-meter
- 4. Geopotential Height Anomalies at 500-hPa
- 5. Precipitation at surface
- 6. Temperature at Sea Surface
- 7. Temperature at 2-meter
- 8. Geopotential Height at 500-hPa
- 9. Jet Stream Position & Intensity at 250-hPa
- 10. AO/AAO Index
- 11 NAO/PNA Index
- 12. RMM1 and RMM2 (MJO)
- 13. Sea Ice Concentration at Surface
- 14. Snow Accumulation at Surface
- 15. QBO Equatorial Zonal Winds at 100-10 hPa
- 16. Temperature Anomaly at 850-hPa
- 17. U/V Wind at 10-meter
- 18. Upper Ocean Heat Content (Temp Avg) at 0-300 mete
- 19. Outgoing Longwave Radiation at Top of Atmos
- 20. U/V Wind at 250-hPa
- 21. Soil Moisture at Surface
- 22. Standardized Precip Index

23.	Basin-Wide TC Counts
24.	U/V Wind at 850-hPa
25.	Temperature at 850-hPa
26.	Blocking Tibaldi-Molteni Idex
27.	Palmer Drought Severity Index
28.	Atmos River Integrated Water Vapor Transport in Column
29.	Heat Wave # of Defined Based on Percentile
30.	Soil Temperature at Surface
31.	Monsoon Onset and End Dates
32.	Temperature at 500-hPa
33.	Zonal Winds at 60 N at 10 mb
34.	Fire Danger Index
35.	East Asian Summer Monsoon Index
36.	Heat Wave # of Defined Based on Threshold
37	Streamflow at Surface
38	Venetation at Surface
20	Energy Holinity Index (Sovere Weather)
39.	Line gy-reliative mean (severe weather)
40.	
41.	Supercell Composite Parameter
42.	Groundwater at Sub-surface

 Every field listed on the aggregate spreadsheet was added to a Slido poll for that particular application

AND ATMOSA

NOAA

PTMENT C

 A full ranking was generated by the workshop participants for each survey

AND ATMOSA

NOAA

Prioritized Metrics

• Worksheets were updated to order the entries based on the polling results

1.0-5.1.5															2	
A	В	С	D	E	F	G	н	1	L	к	L	м	N	0	Р	Q
FIELD	LEVEL	DETERMNISTIC METRIC	ENSEMBLE METRIC	PROBABILISTIC METRIC	TEMPORAL ATTRIBUTE	NOTABLE THRESHOLDS	REGION	VERIFICATION APPROACH	VALIDATION	CLIMATOLOGY SOURCE	SPATIAL MATCHING	STATISTIC available in METplus?	FILE FORMAT supported in METplus?	COMMENTS	COMMENTS	RANKING
Presidentian	Surface	ETS/Bias FSS, Contingency		Reliability	Even: 24h	0.5" 1" 2" 2	CONUS:	arid to arid	Stage IV Applysie			VEQ				
Temperature	Sfc/2-m	RMS/Bias	RMS of Ensemble Mean + Spread	Diagram	Every 3h	0.5 , 1 , 2 1	CONUS:East/West /Central/Alaska	grid-to-obs	METARS			YES				
J/V Wind	Sfc/10-m	RMS/Bias	RMS of Ensemble Mean + Spread		Every 3h	10, 15 m/s	CONUS:East/West /Central/Alaska	grid-to-obs	METARS			YES	M	RW Application		3
Sea Level Pressure	Surface	ACC	RMS of Ensemble Mean + Spread		Every 6h		NH+SH+Tropics	grid-to-grid	GFS Analysis			YES	S	hown here		
Geopotential Height	500-hPa	ACC	RMS of Ensemble Mean + Spread	Reliability	Every 6h	540 dam, 546 dam, 588 dam	NH+SH+Tropics	grid-to-grid	GFS Analysis	ERA-5 Climo		YES				
Dew Point	Sfc/2-m	RMS/Bias	RMS of Ensemble Mean + Spread		Every 3h	50, 60, 70 F	CONUS: East/West/Central/ Alaska	arid-to-obs	METARS			YES				
Snowfall	Surface	ETS/Bias FSS, Contingency table elements	Performance Diagram	Reliability Diagran	Every 24h	2",6", 12"	CONUS: East/West Central	grid-to-grid	NOHRSC Analysis							
/V Wind	850-hPa	RMS, Bias	RMS of Ensemble Mean + Spread	Reliability	Every 6h	15 m/s, 25 m/s, 35 m/s (Anomalies, ideal	NH+SH+Tropics	grid-to-obs	RAOBS + Aircraft Data			YES				8
emperature	850-hPa	RMS, Bias	RMS of Ensemble Mean + Spread	Reliability	Every 6h	0C, 10C, 20C, 30C	NH+SH+Tropics	grid-to-obs	RAOBS + Aircraft Data			YES				
C Intensity	Surface	Average kt	Avg Error of Ensemble Mean + Spread		Every 6h	no distinction needed between hurricanes and weaker storms	All Basins (Atlantic, East Pac, Central Pac, West Pac, North Indian Ocean, SH)	grid-to-obs	Best Track					Need to figure out how to verify tracks and intensity of storms in longer-range forecasts that haven't yet formed; it won get verified if it doesn't exist at the start	t	10
emperature	Sea Surface	RMS + Mean Error Bias	RMS of Ensemble Mean + Spread	BSS, CRPSS	Every 3h and Daily	0C, 1C, 26.5C	NH+SH+Tropics	grid-to-grid	GHRSST							1
Absolute Track Error	Surface	Average NM	Avg Error of Ensemble Mean + Spread		Every 6h	no distinction needed between hurricanes and weaker storms	All Basins (Atlantic, East Pac, Central Pac, West Pac, North Indian Ocean, SH)	grid-to-obs	Best Track					Dissipation - Must give a model penalty for continuing a TC after it has dissipate or dissipated even if it continues on nature	d	12
eopotential Height nomalies	500-hPa	ACC	RMSE of Ensemble Mean + Ensemble Spread		Daily (more important at extended ranges)		NH + SH + Tropics	grid-to-grid	GFS Analysis	ERA-5 Climo				added based on late request		13
Specific Humidity	850-hPa	RMS, Bias	RMS of Ensemble Mean + Spread	Reliability	Every 6h	5 g/kg, 10 g/kg	NH+SH+Tropics	grid-to-obs	RAOBS + Aircraft Data			YES				1/
											suggested spatial matching of 50 or					

Tiered Metrics

Surface

10 m

Marine Surfac

Marine Surfac

0-10 cm

Laver depth

200-hPa

0-10 cm

10-40 cm

925-hPa

200-hPa

DTC

18

CAPE

NCAR

MRW Application results shown here

The metrics were divided into • different tiers (roughly by thirds) to loosely represent potential different gateways in the R2O development process

AND ATMOSA

NOAA

RTMENT C

The initial generation of tiers ٠ was based on absolute survey ranking

NOAA

 Inspection of the data, however, revealed that the fields from certain "disciplines" (categories) were ranked much higher than those from others, leaving out representation from all user and developmental communities in the tiered approach

MRW Application	# of Metrics Pre- Workshop	# of Metrics Post- Breakou		# of Metrics in "Tier 1"	# of Metrics in "Tier 2"	N F (Vean Rating (44 otal)	Median
Upper Level	7	12		5	3		21.2	20
Sfc-Sensible Wx	6	9		6	3		8.3	6
Marine / Cryosphere	4	7		1	1		30.6	33
Land-Sfc / Hydro	6	11		0	1		35.8	37
Tropical	10	10		2	6		22.2	24

Alternate Approach to Tiered Metrics

3		
	Precipitation	Surface
4	Temperature	Sfc/2-m
5	U/V WInd	Sfc/10-m
6	Sea Level Pressure	Surface
7	Geopotential Height	500-hPa
8	Dew Point	Sfc/2-m
9	Snowfall	Surface
10	U/V Wind	850-hPa
11	Temperature	850-hPa
12	TC Intensity	Surface
13	Temperature	Sea Surface
14	Absolute TC Track Error	Surface
15	Geopotential Height Anomalies	500-hPa
16	Specific Humidity	850-hPa

2 TIER 1

NCAR

need to add

land-sfc and

representation for

marine/cryosphere

disciplines in tier 1

	17	TIER 2	
two fields get			
"bumped" to tier 2 to	18	Geopotential Height Anomalies	500-hPa
make room in tier 1 for	19	Specific Humidity	850-hPa
the moved fields	30		
	20	TC Genesis	Surface
	21	CARE	Mixed Laver
	22	Precipitation Anomaly	Wixed Layer
	23	Temperature	700-hPa
	24	Tomporaturo Anomaly	2 motor
	25	U/V Wind	250-hPa
MRW Application	26	Specific Humidity	700-hPa
	27	TC Intense Precipitation	Surface
	28	TC Cross Track Error	Surface
	29	Significant Wave Height	Surface
	30	Sensible Heat Flux	Surface

This approach requires that each discipline be represented in each tier; if a discipline was not represented in a tier, the highest-ranked field from that category was moved up in the rankings

NOAA

- This approach to generating a list of tiered prioritized metrics was the best-received during V&V Working Group meetings
- Of course, not all of the UFS applications have clear-cut categories like SRW, MRW, and Seasonal do

SRW Synthesis

SRW Application	# of Metrics Pre- Workshop	# of Metrics Post- Breakout	# of Metrics in "Tier 1"	# of Metrics in "Tier 2"	Mean Rating (47 total)	Median
Synoptic	5	9	3	6	18.9	20
Sfc-Sensible Wx	8	8	6	1	6.9	5
Severe / Winter	5	8	4	3	16.4	16
Land-Sfc / Hydro	6	9	0	0	40.1	42
Aviation	6	5	0	4	27.4	28
Air Quality	4	9	1	1	34.3	35

NCAR

 Sfc/Sensible Weather fields were ranked very high

NOAA

- Land-Sfc, Aviation, and AQ fields were ranked lower; generating tiers with required representation from all disciplines was extremely useful to properly account for verification needs in these areas
- New fields added during the breakout sessions had a mean rating of 22; two of them ended up in the top 10
- Some of the severe weather fields (like updraft helicity) were ranked surprisingly low, likely reflecting the growing diversity of the hi-res modeling customers
- Still room to parse the disciplines further (make land-sfc and hydro separate?)

DOA

Further Steps in the Data Synthesis

- The breakout groups did a remarkable job resolving many issues, but some gaps on the spreadsheets remain (especially for new fields added), and those need to be addressed
- The plan is to bring in small teams of subject matter experts to fill in those items
- The experts will also review the spreadsheets to identify any potential mistakes (i.e. selection of a verification data set that is inconsistent with the region chosen for verification)
- Potential addition parsing of the "disciplines" to make sure that all components of model development and customer need are properly represented in the lists of prioritized metrics

NCAR Verification, Validation, and Evaluation at EMC

DTC

Courtesy: Jason Levit Chief, VPPPGB

NOAA

EMC's New(ish) Verification Page

www.emc.ncep.noaa.gov/users/verification

Global Models Regional/Hi-Res Models Ocean/Wave Models Real-time Analyses Cyclones **Precipitation/Clouds Air Quality**

• A one-stop shopping site for all EMC verification images

DTC

No tables!

NCAR

EMC Home / EMC Verification

- Common plotting tools and standards
- More images and organization to come!

ND ATMOSA

NOAA

- EMC is planning to build an operational EMC verification system (EVS)
- This is part of a transition from in-house, custom software to all verification being performed using the community-based METplus code
- The EVS will produce real-time stats and graphics for the EMC verification website
- The EVS will allow EMC to share and use community code
- The EVS will be organized around model (UFS application)

2021 DTC UFS EVALUATION METRICS WORKSHOP

MENT

UFS Rainbow Diagram

NPS Modeling	Current	Q3	Q4	Q1	Q2	Q3	Q4FY21-Q3FY22	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	UFS
System	version	FY 20	FY 20	FY 21	FY 21	FY 21	Moratorium	FY 22	FY 23	FY 23	FY 23	FY 23	FY 24	FY 24	FY 24	FY 24	FY 25	FY25	FY25	Application
Global Analysis	GDASv15				GESv16	GESv16.1														
Global Waves	GWMv3			_	0.01.0															
Global Weather Ensembles	GEFSv11																			UFS Medium
Global Wave Ensembles	GWESv3		GEFSv12					1	EVS	/1??					GFSv17/ GEFSv13					Sub-Seasonal
Global Aerosols	NGAC v2																			
Short-Range Regional Ensembles	SREFv7		1000 A																	
Global Ocean & Sea-Ice	RTOFSv1.2			RTOFSv2							RTOFSv3									UFS Marine &
Global Ocean Analysis	GODASv2										GODASv3									Cryosphere
Seasonal Climate	CDAS/ CFSv2											9). 						SFSv1		UFS Seasonal
Regional Hurricane 1	HWRFv12		HWRFv13								HAERIA				HAFRID				HAFEWS	
Regional Hurricane 2	HMONv2	HMONv3									HAFSVI				HAF5V2				HAF SV3	UPS Hurricane
Regional High Resolution CAM 1	HiRes Window v7					HIRESWv8														
Regional High Resolution CAM 2	NAM nests/ Fire Wxv4																			
Regional High Resolution CAM 3	RAPv4/ HRRRv3			RAPv5/ HRRRv4								RRFSv1				RRESv2				UFS
Regional HiRes CAM Ensemble	HREFv2					HREFv3														Regional HiRes
Regional Mesoscale Weather	NAMv4																			Air Quality
Regional Air Quality	CMAQv5					CMAQv6														
Regional Surface Weather Analysis	RTMA/ URMA v2.7		RTMA/UR MAv2.8										3DRTMA/ URMA v3				3DRTMA/ URMA v4			
Atmospheric Transport & Dispersion	HySPLITv7							HySPLIT v8						HySPLIT v9						UFS Air Quality & Dispersion
Coastal & Regional	NWPSv1.2				NWPSv1.3					NWPSv1.4						RWPSv1				UFS Coastal
Great Lakes	GLWUv3.4					8	I	GLWUv4	-							GLWUv5				UFS Lakes
Regional Hydrology	NWMv2				NWMv2.1						NWMv3									UFS Hydrology
Space Weather 1	WAM/IPEv1					WAM/IPEv1														UFS Space
Space Weather 2	ENLILv1					1 I			1									WANNIN EV2		Weather

 Organized by UFS applications which gives EMC the critical flexibility to easily swap models in and out with the contraction / evolution of the NCEP Production Suite

- The lists of prioritized metrics will be used to build Version 1 of the EVS
- Will work with the MET team to identify gaps in the code so that any missing metrics or issues with the ability of the MET code to read and process an observational data set can be resolved
- The prioritized metrics lists will be used by EMC to generate test plans for formal evaluations of future upgrades of UFS components

Next Steps

- Formulate SME teams to help fill in the candidate lists
- Review Metrics to Identify Gaps
- Publish up to DTC and UFS websites
- Implement currently unsupported capability (R20 Year 2-4)

2021 DTC UFS EVALUATION METRICS WORKSHOP

Next Steps - Slido

Status Reporting progress here Looking for volunteers Requested guidance from UFS SC To be done First attempt reported here **Requested via UFS SC** Requested guidance from UFS SC TBD after prioritized lists developed

NOAA

Next Steps

- METplus Release
 - Next METplus release version 4.0.0 end of April 2021
 - Much of the additional development work identified by this workshop will be available in following release - version 4.1 slated for the end of December 2021 and version 5.0 in September 2022
- METplus AMI to explore prototypes
 - AWS Machine Image has beed developed
 - Intended use: NOAA Big Data Project where UFS Prototypes are available to the community
 - Status: Beta-testing, documentation, and training development
 - Expected availability to community: Mid-May
 - Want to get a jump on that? Volunteer to be a beta-tester

Thanks Again

- UFS V&V Cross-Cutting Team Chairs and Contributors:
 - Geoff Manikin (EMC), Tara Jensen (NCAR/RAL and DTC), Jason Otkin (UW-Madison CIMSS), Dave Turner (GSL), Mike Baldwin (Purdue), Matt Janiga (NRL)
 - Burkely Gallo (SPC), Jason Levit (EMC), Jack Settlemaier (SRH), Sarah Lu (U Albany),
 Linden Wolf (OSTI), Deepthi A (OSTI), Yan Xue (OSTI), and Cristiana Stan (GMU)
- EMC MEG and Verification Teams:
 - Perry Shafran, Mallory Row, Alicia Bentley, Logan Dawson, Shannon Shields, Chris MacIntosh, Marcel Caron
- All of the Breakout Facilitators:

Ivanka Stajner, EMC, Perry Shafran, EMC, Logan Dawson, EMC, John Opatz, DTC, Malaquias Peña, UConn, Lindsay Blank, DTC, Mike Ek, DTC Dan D'Amico, DTC, Barb Brown, DTC Lisa Goodrich, DTC, Michelle Harrold, DTC, Mike Baldwin, Purdue, Ligia Bernardet, DTC, Kathryn Newman, DTC, Mark Klein, WPC, Paul Dirmeyer, GMU, Dan D'Amico, DTC, Curtis Alexander, GSL, Alicia Bentley, EMC, Mike Baldwin, Purdue, Julie Prestopnik, DTC, Tatiana Gonzalez, NWS/AFS, Mrinal Biswas, DTC, Xia Sun, DTC, Matt Rosencrans, CPC, Weiwei Li, DTC, YJ Kim, NWS/AFS, Matthew Janiga, NRL, Ben Albright, WPC, Jamie Wolff, DTC, Logan Dawson, EMC, Will Mayfield, DTC, Jon Gottschalck, CPC, Ricky Rood, U Michigan, Hendrik Tolman, NOAA

• DTC administrative support and UCAR Multimedia Services

For More Information

• DTC UFS Evaluation Metrics Website:

https://dtcenter.org/events/2021/2021-dtc-ufs-evaluation-metrics-workshop

- Contact:
 - jensen@ucar.edu
 - <u>geoffrey.manikin@noaa.gov</u>
 - 0
- Look for updates:
 - Webinar for Attendees (May-June timeperiod
 - 2022 AMS Probability/Stats and R2O Meetings
- DTC Visitor Program:

https://dtcenter.org/visitor-program

• DTC Workshop - June 7-9, 2021: http://dtcenter.org/events/workshop/2219

INTEGRATING CLOUD AND CONTAINER TECHNOLOGIES INTO UNIVERSITY NUMERICAL WEATHER PREDICTION (NWP) CURRICULUM

DOA