FV3 on GPUs

'WO approaches to accelerate
global cloud-resolving modeling

Lucas Harris
with Rusty Benson and Oli Fuhrer

and many others from GFDL, GMAO, Vulcan/Al?, NVIDIA, etc.

%y >3 Ai2

VULCAN

N
&P

Motivation: FV3-based GCRMs

NASA Goddard and GFDL pioneered US GCRMs in the mid 2000s

* NASA GEOS and GFDL X-SHIELD lead US contributions to the
international DYAMOND intercomparison, phases 1 and 2
e 40-day simulations at 3-km (C3072) resolutions
e Great TCs, both #s and structure (Judt et al., JMSA, 2021)
e X-SHIiELD: Year-round simulation in progress
e GEOS: Experimental 1.5-km run also submitted

These are useful prototypes for future weather prediction and climate
modeling systems, and powerful demonstrations of model capabilities.

GFDL GCRM Performance
“Twodel |Grg/levels | Machine | #cores | performance | source

2013 FV3 (dycore only) (C2560, 32 levels Argonne 1048K 87 SDPD sl
. files/ANL ALCF TM 14 1
BlueGene/Q (threads) 24 min/d pdf
2015 FV3 (dycore only) C3072,127 levels NERSC Edison 110K 144 SDPD NGGPS AVEC
10 min/d Phase | report
2019 X-SHiIELD C3072, 79 levels NOAA Gaea 55K 65 SDPD My testing
22 min/d
2020 X-SHiIELD C3072, 79 levels MSU Orion 36K 55 SDPD Rusty Benson
26 min/d

SDPD = Simulated days per day

FV3 + FMS, with MPI and OpenMP
Tastes Great! Less Filling!

https://www.alcf.anl.gov/files/ANL_ALCF_TM_14_1.pdf

Convection “resolving” models

Deep convective plumes not resolved
until Ax ~ O(250 m)

Bryan et al. (2003, JAS), Bryan and Morrison (2012, MWR), Jeevanjee (2017, JAMES),
Shi et al. (2019, JAMES), lots more

At Ax = 3—4 km:
> Continental convection kinda sorta resolved?

> Tropical convection barely represented
> Shallow convection, definitely not

> Turbulent eddies haha

> Orography always benefits

We can do better. But higher resolutions need better physics.

Moving forward: < 3-km efforts

* Lots of work outside of the US:
e UKMO: 2.2-km and 1.1-km CONUS, 100 m London
e ECMWEF: 1.4-km global (hydrostatic) nature run
* MeteoSwiss COSMO: 1.1-km central Europe
* Japan NICAM: 800-m GCRM

* Some US efforts:
e 1.5-kmn NAM Fire Weather and HWRF inner nest
* NSSL 1-km WoF; other NSSL and CAPS 1-km experiments
 Various NCAR experiments (including LES prediction)

Open question: how does explicit deep convection affect synoptic and
planetary circulations??

Previously, on GPUs

* FV3’s modular design, applying atomic stencils to 3D arrays, fits well
to GPUs, but some reorganization of code needed

* NASA GEOS ported to GPUs using CUDA Fortran hitps://slideplayer.comjslide/7775285/
Hydrostatic GEOS was 2—-5x faster than CPUs socket-to-socket

* Institute for Atmospheric Physics (Beijing) has ported SHIiELD to CUDA-C
Nonhydrostatic model is 6x faster than on CPUs socket-to-socket
e Success, but difficult to maintain:
Continual changes to GPU hardware and compilers
No GPU programming standards: CUDA only really works for NVIDIA GPUs
* No large-scale GPU systems to work with in NOAA or NASA

Have to keep “feeding the dog”: Need a really big compute problem
* Few “standard” weather or climate problems will benefit enough to justify the port

WARNING: 1 CPU to 1 GPU comparisons may cause dizziness, embarrassment

Method |
Porting with ACC

NVIDIA Hackathons

* NVIDIA sponsored a Hackathon at Princeton University in 2019.
Several GFDL and Princeton employees created kernels of routines in
FV3 and began ACC optimization of 1D advection operator and
vertical semi-implicit solver

* In the 2020 NOAA Hackathon a shallow-water routine and the vertical
remapping were ported by a GFDL-Princeton-Vulcan Team.

* Since advection and vertical remapping are frequently used in FV3 for
many purposes these are key areas to accelerate.

* Porting was significantly aided by mentors from NVIDIA and Lawrence
Berkeley National Laboratory

ACC Porting

OpenACC works like OpenMP
does for multi-threading.
Directives are added to existing
code to tell the compiler how to
parallelize a block and which data
to move between GPU and CPU.

Pros: easy to learn, more portable
than CUDA

Cons: Not a standard (yet; may
merge with OpenMP), may choke
on complex loops, often still
requires some code-
rearrangement.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9262-zero-to-gpu-hero-with-openacc.pdf

Parallel Hardw

EEEEEEENERNENEEEN
EEEEEEENEEEENEEEN
EEEEEEENERNENEEEN
ENENEEENEEEEDEEN
EEEEEEENERNENEEEN
ENENEEENEEEEDEEN

EEEEEEENERNENEEEN
EEEEEEENENENEEEN
EEEEEEENENENEEEN
EEEEEEENEEEEDEEN
ENEBEEENENEEDEEN
EEEEEEENENENEEEN

int main(){

{
¥
¥

<sequential code>
#pragma acc kernels <—

<parallel code>

OpenACC &

,,,,,,,,,,,,,,,,,,,,,,,,,, NVIDIA

are

Compiler
Hint

I'M NOT SURE I CAN Y CAREFUL! WE DONT WANT To Yo
STAND So MUCH RUISS. LEARN ANYTHING FROM THIS.

GPU Results

* Need to use a sufficiently large problem (eg. 96x96x91 as in GCRM) to
take advantage of GPU parallelism.

e Advection operator: 50x speedup 1 CPU = 1 GPU
* WARNING: No optimization for this CPU, no MPI

e fv_mapz: 47x speedup, despite challenging double-loop
* Multi-tracer remapping adds lots of parallelism

* c_sw shallow-water routine: 3.8x speedup
* Complex routine that needs more careful thought

* Further speedup can be done by better overlapping computes and
copies and taking advantage of asynchronous calculation

ACC Lessons

* Branches for upwinding and monotonicity do not degrade
performance as feared.

* In-loop conditions (eg. edge handling) do need copying and do give a
performance hit

 Some code reorganization may be necessary to reduce copying and
increase parallelism. May need to think carefully about how best to
do this.

e Key areas can also be re-written in CUDA if necessary.

Method Il
GT4py Domain-Specific Language

Domain-Specific Language (DSL)

A DSL is a language tailored for a specific purpose. The domain
scientist specifies the algorithm layout and fundamental operations.

* Domain-specific knowledge - Domain-specific optmizations

* A special DSL compiler with several “backends” creates the codes
optimizing for a specific computing architecture

* Chooses memory layout, parallelism, compute order, etc.

* Goals:

* Improved productivity by domain scientist without needing to learn the ins-
and-outs of code optimization

* Performance portability between systems without code re-writes: only a new
backend is needed

GT4py % GridTools

* Joint open-source effort with CSCS and MeteoSwiss

* Domain scientists write stencils of operations in Python, which is
then compiled by different backends
* x86 CPU, NVIDIA GPU
* Parallelism, looping, data structures etc. specified by backend, not in Python

* Using Python leverages vast array of tools and libraries, permitting
integration with visualization and Jupyter notebooks
* Vulcan FV3GFS Python wrapper tutorial at GFDL in January 2021
* See McGibbon et al. 2021, GMDD

* GT4py being considered by MPI/DWD for ICON and ECMWF for
FVM—Dbut unstructured grid solvers are harder to port

Original FV3 Fortran 90

DSL Port of Routine

UFS and GT4py >

VULCAN

A multi-agency international public-private-academic partnership

* Vulcan has committed a team (8 scientists and engineers) to porting
FV3 and the GFS Physics into GT4py

* DSL Training held at GFDL in November 2020

* NASA Goddard has committed resources to GT4py development of
FV3 and GEOS

 GFDL supports and advises development, two Vulcan embeds

* CSCS and MeteoSwiss develop back-end in tandem with UFS
implementation

FV3 in GT4py

* FV3 has been ported into GT4py and validates answers vs. Fortran

* Next step: optimization
* Want to eliminate as much slow Python as possible

* All operations reading/writing prognostic variables must run on GPU
Data transfer to CPU is slow

* New features have been added to DSL (language and backend) to
support cubed-sphere edge handling, caching and fusing stencils,
improving compiler code translation, etc.

Fortran Python DSL Difference

Temperature anomaly [K] Temperature anomaly [K] Temperature anomaly [K]
Time = 6 days Time = 6 days Time = 6 days

< > 0.5 < ,“> 0.5

le-5

GFS Physics in GT4py

 ETH Zurich students working to
port GFS Physics packages into
GT4py

 GFDL Microphysics, TKE-EDMF,
sea ice routines ported; RRTM
this summer

* Already seeing substantial single-
node speedups on Piz Daint

e 12-core Intel Xeon vs. NVIDIA Tesla
V100 (ie. a good comparison)

Microphysics Module

l —e— Fortran
71 —e— DSL (Python)
DSL (CPU)

—e— DSL (GPU)

ol

0 25 50 75 100 125 150 175 200
Number of gridpoints

GFDL Microphysics in Fortran vs. GT4py

104

Concluding Thoughts

* The CPU MPI/OpenMP methods are no longer the only game in town,
but they still serve us well

* GPUs can give us great performance for lower cost and less energy on
big problems (GCRMs), but the landscape is constantly shifting

* FV3 has succeeded on GPUs, but how to ensure performance-
portability?
* The GridTools/GT4py community gives us a lot of hope for

performance portability.

* Vulcan has made great progress—still work that needs to be done for FV3 and
UFS performance portability

