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Motivation: FV3-based GCRMs

NASA Goddard and GFDL pioneered US GCRMs in the mid 2000s
• NASA GEOS and GFDL X-SHiELD lead US contributions to the 

international DYAMOND intercomparison, phases 1 and 2
• 40-day simulations at 3-km (C3072) resolutions
• Great TCs, both #s and structure (Judt et al., JMSA, 2021)
• X-SHiELD: Year-round simulation in progress
• GEOS: Experimental 1.5-km run also submitted

These are useful prototypes for future weather prediction and climate 
modeling systems, and powerful demonstrations of model capabilities.



GFDL GCRM Performance

Model Grid/levels Machine # Cores Performance Source 

2013 FV3 (dycore only) C2560, 32 levels Argonne 
BlueGene/Q

1048K 
(threads)

87 SDPD 
24 min/d

https://www.alcf.anl.gov/
files/ANL_ALCF_TM_14_1
.pdf

2015 FV3 (dycore only) C3072, 127 levels NERSC Edison 110K 144 SDPD
10 min/d

NGGPS AVEC 
Phase I report

2019 X-SHiELD C3072, 79 levels NOAA Gaea 55K 65 SDPD
22 min/d

My testing

2020 X-SHiELD C3072, 79 levels MSU Orion 36K 55 SDPD
26 min/d

Rusty Benson

SDPD = Simulated days per day

FV3 + FMS, with MPI and OpenMP
Tastes Great! Less Filling!

https://www.alcf.anl.gov/files/ANL_ALCF_TM_14_1.pdf


Convection “resolving” models
Deep convective plumes not resolved 
until ∆x ~ O(250 m)

Bryan et al. (2003, JAS), Bryan and Morrison (2012, MWR), Jeevanjee (2017, JAMES), 
Shi et al. (2019, JAMES), lots more

At ∆x = 3–4 km:
➢ Continental convection kinda sorta resolved?
➢ Tropical convection barely represented
➢ Shallow convection, definitely not
➢ Turbulent eddies haha
➢ Orography always benefits

We can do better. But higher resolutions need better physics.

I’m old



Moving forward: < 3-km efforts
• Lots of work outside of the US:
• UKMO: 2.2-km and 1.1-km CONUS, 100 m London
• ECMWF: 1.4-km global (hydrostatic) nature run
• MeteoSwiss COSMO: 1.1-km central Europe
• Japan NICAM: 800-m GCRM 

• Some US efforts:
• 1.5-km NAM Fire Weather and HWRF inner nest
• NSSL 1-km WoF; other NSSL and CAPS 1-km experiments
• Various NCAR experiments (including LES prediction)

Open question: how does explicit deep convection affect synoptic and 
planetary circulations??



Previously, on GPUs

• FV3’s modular design, applying atomic stencils to 3D arrays, fits well 
to GPUs, but some reorganization of code needed
• NASA GEOS ported to GPUs using CUDA Fortran

Hydrostatic GEOS was 2–5x faster than CPUs socket-to-socket
• Institute for Atmospheric Physics (Beijing) has ported SHiELD to CUDA-C

Nonhydrostatic model is 6x faster than on CPUs socket-to-socket

• Success, but difficult to maintain:
• Continual changes to GPU hardware and compilers
• No GPU programming standards: CUDA only really works for NVIDIA GPUs
• No large-scale GPU systems to work with in NOAA or NASA
• Have to keep “feeding the dog”: Need a really big compute problem

• Few “standard” weather or climate problems will benefit enough to justify the port

WARNING: 1 CPU to 1 GPU comparisons may cause dizziness, embarrassment

https://slideplayer.com/slide/7775285/



Method I
Porting with ACC



NVIDIA Hackathons

• NVIDIA sponsored a Hackathon at Princeton University in 2019.
Several GFDL and Princeton employees created kernels of routines in 
FV3 and began ACC optimization of 1D advection operator and 
vertical semi-implicit solver
• In the 2020 NOAA Hackathon a shallow-water routine and the vertical 

remapping were ported by a GFDL-Princeton-Vulcan Team.
• Since advection and vertical remapping are frequently used in FV3 for 

many purposes these are key areas to accelerate.
• Porting was significantly aided by mentors from NVIDIA and Lawrence 

Berkeley National Laboratory



ACC Porting
Low Learning Curve

OPENACC

� OpenACC is meant to 
be easy to use, and 
easy to learn

� Programmer remains 
in familiar C, C++, or 
Fortran

� No reason to learn 
low-level details of the 
hardware.

int main(){

<sequential code>

#pragma acc kernels
{
<parallel code>
}

}

Compiler
Hint

CPU Parallel Hardware

The programmer will 
give hints to the 

compiler about which 
parts of the code to 

parallelize.
The compiler will then 
generate parallelism 
for the target parallel 

hardware.

OpenACC works like OpenMP 
does for multi-threading.
Directives are added to existing 
code to tell the compiler how to 
parallelize a block and which data 
to move between GPU and CPU.
Pros: easy to learn, more portable 
than CUDA
Cons: Not a standard (yet; may 
merge with OpenMP), may choke 
on complex loops, often still 
requires some code-
rearrangement.

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9262-zero-to-gpu-hero-with-openacc.pdf



GPU Results

• Need to use a sufficiently large problem (eg. 96x96x91 as in GCRM) to 
take advantage of GPU parallelism.
• Advection operator: 50x speedup 1 CPU ⇒ 1 GPU
• WARNING: No optimization for this CPU, no MPI

• fv_mapz: 47x speedup, despite challenging double-loop
• Multi-tracer remapping adds lots of parallelism

• c_sw shallow-water routine: 3.8x speedup
• Complex routine that needs more careful thought

• Further speedup can be done by better overlapping computes and 
copies and taking advantage of asynchronous calculation



ACC Lessons

• Branches for upwinding and monotonicity do not degrade 
performance as feared. 
• In-loop conditions (eg. edge handling) do need copying and do give a 

performance hit
• Some code reorganization may be necessary to reduce copying and 

increase parallelism. May need to think carefully about how best to 
do this.
• Key areas can also be re-written in CUDA if necessary. 



Method II:
GT4py Domain-Specific Language
All results courtesy the Vulcan/AI2 Climate Modeling DSL Team



Domain-Specific Language (DSL)

• A DSL is a language tailored for a specific purpose. The domain 
scientist specifies the algorithm layout and fundamental operations.
• Domain-specific knowledge à Domain-specific optmizations

• A special DSL compiler with several “backends” creates the codes 
optimizing for a specific computing architecture
• Chooses memory layout, parallelism, compute order, etc.

• Goals:
• Improved productivity by domain scientist without needing to learn the ins-

and-outs of code optimization
• Performance portability between systems without code re-writes: only a new 

backend is needed



GT4py
• Joint open-source effort with CSCS and MeteoSwiss
• Domain scientists write stencils of operations in Python, which is 

then compiled by different backends 
• x86 CPU, NVIDIA GPU
• Parallelism, looping, data structures etc. specified by backend, not in Python

• Using Python leverages vast array of tools and libraries, permitting 
integration with visualization and Jupyter notebooks
• Vulcan FV3GFS Python wrapper tutorial at GFDL in January 2021
• See McGibbon et al. 2021, GMDD

• GT4py being considered by MPI/DWD for ICON and ECMWF for 
FVM—but unstructured grid solvers are harder to port



subroutine del2_cubed(q, cd, del6_v, del6_u, rarea, grid)

real :: fx(is:ie+1, js,je), fy(is:ie, js:je+1)

do k = 1, km
do j = js, je 

do i = is, ie + 1
fx(i,j) = del6_v(i,j) * ( q(i-1,j,k) - q(i,j,k) )

enddo
enddo

do j = js, je + 1
do i = is, ie

fy(i,j) = del6_u(i,j) * ( q(i,j-1,k) - q(i,j,k) )
enddo

enddo

do j = js, je
do i = is, ie

q(i,j,k) = q(i,j,k) + cd * rarea(i,j) * (
fx(i,j) - fx(i+1,j) + fy(i,j) - fy(i,j+1) )

enddo
enddo

enddo

...

end subroutine del2_cubed

call del2_cubed(q, cd, del6_v, del6_u, rarea, grid)

@gtscript.function
def delx(q, weight):

return weight * (q[-1, 0, 0] – q)

@gtscript.function
def dely(q, weight)

return weight * (q[0, -1, 0] – q)

@gtscript.stencil(backend=‘numpy’)
def del2_cubed(q:field, rarea:field, del6_v:field, del6_u:field, cd:float):

with computation(PARALLEL), interval(...):
fx = delx(q, del6_v)
fy = dely(q, del6_u)
q = q + cd * rarea * (fx - fx[1, 0, 0] + fy - fy[0, 1, 0])

del2_cubed(q, del6_u, del6_v rarea, cd,
origin=grid.compute_origin(), domain=grid.compute_domain())

Original FV3 Fortran 90

DSL Port of Routine



UFS and GT4py

A multi-agency international public-private-academic partnership
• Vulcan has committed a team (8 scientists and engineers) to porting 

FV3 and the GFS Physics into GT4py
• DSL Training held at GFDL in November 2020

• NASA Goddard has committed resources to GT4py development of 
FV3 and GEOS
• GFDL supports and advises development, two Vulcan embeds
• CSCS and MeteoSwiss develop back-end in tandem with UFS 

implementation

MeteoSwiss



FV3 in GT4py
• FV3 has been ported into GT4py and validates answers vs. Fortran
• Next step: optimization
• Want to eliminate as much slow Python as possible
• All operations reading/writing prognostic variables must run on GPU 

Data transfer to CPU is slow

• New features have been added to DSL (language and backend) to 
support cubed-sphere edge handling, caching and fusing stencils, 
improving compiler code translation, etc.

Fortran
Temperature anomaly [K]

Time = 6 days

Python DSL
Temperature anomaly [K]

Time = 6 days

Difference
Temperature anomaly [K]

Time = 6 days



GFS Physics in GT4py

• ETH Zurich students working to 
port GFS Physics packages into 
GT4py
• GFDL Microphysics, TKE-EDMF, 

sea ice routines ported; RRTM 
this summer 
• Already seeing substantial single-

node speedups on Piz Daint
• 12-core Intel Xeon vs. NVIDIA Tesla 

V100 (ie. a good comparison)

GFDL Microphysics in Fortran vs. GT4py



Concluding Thoughts

• The CPU MPI/OpenMP methods are no longer the only game in town, 
but they still serve us well
• GPUs can give us great performance for lower cost and less energy on 

big problems (GCRMs), but the landscape is constantly shifting
• FV3 has succeeded on GPUs, but how to ensure performance-

portability?
• The GridTools/GT4py community gives us a lot of hope for 

performance portability. 
• Vulcan has made great progress—still work that needs to be done for FV3 and 

UFS performance portability


