

UFS Webinar Series

The Unified Forecast System Short-Range Weather Application for Convection Allowing Model Forecasts

04 June 2020

Curtis Alexander, Jacob Carley, Jamie Wolf, Jeff Beck, Lou Wicker

NOAA/GLOBAL SYSTEMS LABORATORY NOAA/NCEP/EMC NCAR/DTC NOAA/NSSL

UFS What is it?

https://ufscommunity.org/

The Unified Forecast System (UFS) is a:

- community-based, coupled, comprehensive Earth modeling system
- numerical applications span local to global domains
- predictive time scales from sub-hourly analyses to seasonal predictions
- designed to support the <u>Weather Enterprise</u>
- the source system for <u>NOAA</u>'s operational numerical weather prediction applications

Increasingly modular components Agnostic interactions through enabling software technologies like CCPP UFS applications may differ in one or more components, but goals: Data Assimilation \rightarrow Joint Effort for Data assimilation Integration (JEDI) Physics Suite \rightarrow Scale-awareness for local to global Dynamic Core \rightarrow FV3

UFS Applications

SRW/CAM Application Team (AT)

MRW/S2S Application Team (AT)

System Name	RTMA/URMA-3D	WoFS	RRFS	HAFS
Predictive Time Scale	Now	Next few hours	Next few days	Next week
Grid Spacing	2.5 km	1 km	3 km	1-3 km
Cadence Update	15 min	30 min (on- demand)	Hourly	Six hourly
Domain	CONUS	Sub-CONUS	CONUS	Oceanic Basins
Operational Legacy System Replacements	RTMA-2D URMA-2D	Fire Wx Nest	NAMnests/HRRR/HiRe sWindows/HREF	HWRF/HMON
Model Core	SAR FV3	SAR FV3	SAR FV3	SAR FV3 or Global FV3 Nest
Analysis System	GSI to JEDI	GSI to JEDI	GSI to JEDI	GSI to JEDI
First Implementation	Q3FY23	FY24-25	Q2FY23	Q3FY22

UFS Webinar Introduction

- <u>Rapid Refresh Forecast System (RRFS)</u>
 - Based on the FV3-Stand Alone Regional (SAR)
 - Rapidly updated
 - Convection-allowing (~3 km)
 - Ensemble data assimilation (est. 30 or 40 members)
 - Ensemble forecasts (est. 10 members)
 - 18h+ hourly
 - 36-60h every 6 to 12 hours
- When? ~FY23
- Facilitate replacement of several current regional systems
 - e.g., NAM+nests, RAP +HRRR, HiRes Windows, HREF

UFS Webinar

 \bigcirc

RRFS

04 June 2020 • 7

UFS Webinar • RRFS

- Models such as the HRRR with a horizontal grid spacing of 3 km can develop many convective circulations explicitly.
- Deep convective parameterization is not needed for these models.
- This configuration allows for improved prediction of convective mode and structure.

Example: National Weather Service including SPC, WPC, and AWC FAA Command Center NSSL, ARL, NCAR, and LL (Lincoln Laboratory)

General Forecasting	g		
Renewable	Energy (wind/solar)	Renewable Energy (wind/solar)	Historia Center in Annantic Center
Same-Day	Decision Support	Day-Ahead Decision Support	
Severe	Severe Weather -Watches,	Severe Weather	
Weather	Convective Outlooks	Day 2 Outlooks	
QPF /	Heavy rainfall/snowfall	Heavy rainfall/snowfall	
hydro	watches, National Water Model	Day 2 Outlooks	
Aviation Tactical Planning	Aviation Strategic Planning		_

UFS Webinar CAM Motivation

High Impact Weather Prediction Needs: HPC

40 km RUC 1998

(1.5x resolution)

Not enough information to help route aircraft on approach to Newark, NJ

Sufficient information to help route aircraft on approach to Newark, NJ

RAP/HRRR Implementation History

2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
			RAPv2 R&D	RAPv2 T2	20						
	HRR	Rv1 R&D		HRRR	v1 T2O						
				RAPv	3/HRRRv2 R&D	RAPv3/HRR	Rv2 T2O				
							RAPv4	/HRRRv3 RAPv4/I	HRRRv3 T2O		
									RAPv5/	HRRRv4 RAPv5/ &D T2	HRRRv4 20
NWS NC	EP and W	/FOs – Fe	edback "O	2R" and Ir	mplementa	ations "R20) "				
Aviation	(FAA, NC	AR, MIT/L	L, AWC) –	CoSPA F	Project – S	IP/FIP/GT	G/etc… –	15 min out	tput		
	<u>Severe</u>	<u>e</u> (SPC, N	SSL) – Voi	rtex II/SE	Projects –	WoF – Ho	ourly Maxi	mum Field	S		
			Energy (DOE) – W	/FIP 1/2, S	FIP Proje	cts – Aver	aged Direc	t/Diffuse F	Rad/Wind	
						<u>Hydrolog</u>	y (WPC, 0	OWP) – AG	QPI, NWM	Projs, PQ	PF/Ptype
							Air Qua	<mark>lity</mark> (WFOs	s) – FRP, S	Smoke, Fe	edbacks
									Coupling		/I, Lakes
								-			

Summary of HRRRv4 Changes

Surface Characterization	Data Assimilation	Model Dynamics & Physics	Postprocessing Algorithms
Switch to MODIS albedo (higher), replace 1-deg albedo	GOES-16 ABI radiances N20 CrIS-FSR/ATMS (with direct readout)	WRF–ARWv3.9+, including physics updates MYNN PBL update: - improved eddy-diffusion/mass-flux (EDMF) mixing	Major revisions to cloud-cover rendering
Adjust albedo for solar zenith angle	GOES-16 AMVs	Aerosol sources/sinks – fire/smoke, dust	snowfall algorithm
15" resolution land-use data	Use aircraft/raob moisture obs above 300 hPa	RUC land-surface: - improved representation of snow cover - better 2m T/T _d diagnostics - lake model for small lakes	Add HAILCAST hail-size diagnostic
Fractional sea/lake ice concentration	TC vitals for tropical cyclone position/strength Use HRRR Data Assimilation System	Enhanced orographic gravity-wave drag Reduced 6 th -order diffusion, including	
FVCOM data for Great Lakes temps/ice fraction	(HRRRDAS)	hydrometeors Removal of microphysics latent-heating limit	
VIIRS/MODIS fire-radiative power (wildfire location, intensity)		Use NSSL implicit–explicit vertical advection scheme	

UFS Webinar • RAP/HRRR History

High Impact Weather Prediction Needs: HPC

Introducing and Testing Limited Area Capability of FV3

5000

4000

- Running real time, continuously since May 2018
- 3 km Nest: May, 2018 July 2019
- 3 km <u>Stand Alone Regional (SAR)</u>: July, 2018 Present

*Material courtesy of T. Black and J. Abeles

FV3GFS 24-hr Forecast Clocktimes

Hera R&D No History Writes

nest needs for completing in a given amount of time

Introducing and Testing Limited Area Capability of FV3

- Practical reasons underscore need for SAR (more efficient, focused development, flexibility, etc.)
- How do Nest and SAR compare in short lead times? ~60 hr forecast
 No blending of LBCs (specified)
- FSS 6-h precip, June 2019: SAR vs

FV3SAR is better than FV3NEST at the 99% significance level
 FV3SAR is better than FV3NEST at the 95% significance level

No statistically significant difference between FV3SAR and FV3NEST

FV3SAR is worse than FV3NEST at the 95% significance level

FV3SAR is worse than FV3NEST at the 99% significance level

Data missing

NEST

Statistic for symbols: DIFF_SIG , Statistic for values: DIFF

							CON	JS				
			F06	F12	F18	F24	F30	F36	F42	F48	F54	F60
		< 5 km	▼ -0.002	0.000	-0.001	-0.005	0.002	0.000	0.015	0.007	0.010	0.002
		< 24 km	▼ -0.002	0.001	0.000	-0.006	0.003	0.001	0.017	0.008	0.013	0.003
	6-h Precip. > 2 mm	< 52 km	▼ -0.002	0.001	0.000	-0.005	0.005	0.003	0.018	0.010	0.014	0.003
		< 100 km	▼ -0.002	0.002	0.000	-0.004	0.006	0.004	0.017	0.010	0.015	0.004
		< 148 km	▼ -0.002	0.002	-0.001	-0.003	0.006	0.005	0.016	0.009	0.014	0.004
		< 5 km	▼ -0.003	-0.002	-0.003	-0.004	0.003	0.009	0.017	0.00 7	0.011	0.003
FSS		< 24 km	▼ -0.004	-0.001	-0.003	-0.005	0.006	0.012	0.021	0.010	0.014	0.004
. 55	6-h Precip. > 5 mm	< 52 km	▼ -0.004	0.001	-0.003	-0.003	0.008	0.015	0.023	0.013	0.015	0.005
		< 100 km	▼ -0.004	0.002	-0.003	-0.001	0.008	0.017	0.025	0.014	0.014	0.006
		< 148 km	▼ -0.004	0.002	-0.004	0.000	0.008	0.018	0.025	0.013	0.013	0.007
		< 5 km	-0.001	-0.001	-0.002	-0.007	0.010	0.016	0.012	0.009	0.018	0.000
		< 24 km	-0.001	-0.001	-0.004	-0.009	▲ 0.015	0.021	0.016	0.013	0.023	0.001
	6-h Precip. > 10 mm	< 52 km	-0.001	0.000	-0.005	-0.007	▲ 0.017	0.026	0.022	0.017	0.027	0.001
		< 100 km	-0.002	0.002	-0.005	-0.005	0.017	0.029	0.026	0.020	0.031	0.002
		< 148 km	-0.002	0.003	-0.006	-0.004	0.016	0.032	0.028	0.023	0.033	0.005

Nearly uniform grid size, including near poles

Numerical problems near poles

FV3 Cubed Sphere Introduction

The FV3 Cubed Sphere:

- Uses a gnomonic projection where great circles serve as model coordinates
- Global coverage consists of six tiles
- Offers good uniformity (widest cell only √2 wider than narrowest), but only for standard six-tile global setup
- Result is a non-orthogonal grid, requiring covariant and contravariant wind calculations
- Fluxes are orthogonal to model coordinates

Initial SAR-FV3 code by EMC:

- Used the nesting capability (tile seven) in the FV3 to act as a regional domain, and remove tiles 1-5
- Still allows for Schmidt stretching of the gnomonic grid for flexible domain sizes
- Incorporated necessary modifications to FV3 code to include a halo around tile seven in which LBCs would be transferred to the regional domain
- Tile six is then discarded and all calculations are made on the regional domain with halo

UFS Webinar SAR Grid Generation

Through collaboration with EMC (Jim Purser):

- Concentrate model coordinates (great circles) near center of tile six to improve uniformity after stretching
- Added two plotting parameters (alpha and kappa) to the generation of the gnomonic grid
- Flares the corners of the grid to reduce grid variability

Blue represents the outline of the SAR grid (tile seven) with the sixth tile of the global FV3 in red

UFS Webinar SAR Grid Generation

UFS Webinar SAR Grid Generation

Original HRRR-ARW Grid

No Global "Parent" Grid

2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60

UFS Webinar SAR Grid Generation

First Attempt at Double-Basin Hurricane Domain/Grid

UFS Webinar SAR Grid Generation

HFIP Summer Demo Experiments:

Nested 3-km FV3 GFS

- HAFS v0.A A FV3 SAR configuration, analogous to the CAM FV3 SAR configuration, but for TC regions of interest. GFS physics and RAP/HRRR (continental CAM physics)
- 2. HAFS v0.B A FV3 nest within the FV3 global model (as shown above)

Image courtesy of Andrew Hazelton (NOAA/AOML/HRD).

Lateral Boundary Condition Treatment

Run once

per expt. (optional)

- (1. make_grid Generates grid files (GFDL or JP format)
- 2. make_orog Generates filtered orography files
- 3. make_sfc_climo Generates surface climatology files (used if fields are not available in external model output)
- **4. get_extrn_ics** Retrieves output files from the external model needed for generating ICs, surface fields, and the 0-th hour LBC
- 5. get_extrn_lbcs Retrieves output files from the external model needed for generating LBCs

Run once for each cycle

- 6. make_ics Creates ICs on the native FV3-SAR grid (including surface fields and the 0-th hour LBC).
- 7. make_lbcs Creates LBCs for each boundary condition interval on the FV3-SAR grid.
- 8. run_fcst Runs a forecast (cycle) with the FV3-SAR
- **9. run_post** Processes write-component forecast output files through UPP to generate grib2 files

- The workflow has been tested on multiple supercomputing platforms, including NOAA HPC in Boulder (Theia, Jet) and in DC (WCOSS), OU/NSSL (Stampede/Odin), and soon on NCAR's Cheyenne
- Supports FV3GFS, GSMGFS, RAP, HRRR, or NAM data for IC/BCs and can read in grib2, nemsio, and netcdf format for FV3GFS data
- Compatible with the Community Common Community Physics Package (CCPP) and supports either the GFS or GSD physics suites
- Users can generate their own domains, or select from predefined domains, including coarse- and high-resolution versions of the RAP, HRRR, HRRR-AK, EMC-CONUS, EMC-AK, and HAFSv0.A

<workflow realtime="F" scheduler="&SCHED;" cyclethrottle="20">

<cycledef>00 &HH; ⅅ &MM; &YYYY; *</cycledef>

<log>

<cyclestr>&LOG_DIR;/FV3_@Y@m@d@H.log</cyclestr> </log>

<task name="make_grid" maxtries="3">

<command>&USHDIR;/make_grid_orog.sh</command> <nodes>&PROC_MAKE_GRID_OROG;</nodes> <jobname>make_grid_orog</jobname> <join><cyclestr>&LOG_DIR;/make_grid_orog_@Y@m@d@H.log</cyclestr></join>

</task>

<task name="make_orog" maxtries="3">

<command>&USHDIR;/get_GFS_files.sh</command> <nodes>&PROC_GET_GFS_FILES;</nodes> <jobname>get_GFS_files</jobname> <join><cyclestr>&LOG_DIR;/get_GFS_files_@Y@m@d@H.log</cyclestr></join>

<dependency> <taskdep task="make_grid"/> </dependency>

</task>

Member: gsl- sarfv3	ICs	LBCs	Micro-	physics	PBL		LSM	Radiation	Hord	Mo	odel
gsl-fv3sar01	HRRRv4	RAP	Thomp	son	MYNN		RUC	RRTMG	5	FV	3
gsl-fv3sar02	HRRRv4	RAP	Thomp	son	MYNN		RUC	RRTMG	6	FV	3
gsl-fv3sar03	GFS	GFS	Thomp	son	MYNN		RUC	RRTMG	5	FV	3
gsl-fv3sar04	GFS	GFS	Thomp	son	MYNN		RUC	RRTMG	6	FV	3
Members: emc-fv3sar	ICs	L	BCs	Microp	physics	PB	il .	LSM	Radiation		Model
emc-fv3sar	GFSv15	(JFSv15f	GFDL		ED	MF	NOAH	RRTMG		FV3
emc-fv3sarX	GFSv15	(FSv15f	Thom	pson	M	YNN	NOAH	RRTMG		FV3
emc-fv3sarDA	GFSv15	(FSv15f	Thom	pson	M	YNN	NOAH	RRTMG		FV3
Members: nssl glm	- ICs	l	.BCs	Micro	physics	PB	BL	LSM	Radiation	ו	Model

GSL

EMC

NSSL

Members: nssl- glm	ICs	LBCs	Microphysics	PBL	LSM	Radiation	Model
sarfv3-ICs01	GFS	GFSf	Thompson	MYNN	NOAH	RRTMG	FV3
sarfv3-ICs02	UM	UMf	Thompson	MYNN	NOAH	RRTMG	FV3

UFS Webinar

 SAR Testing

Regional FV3 Testing in SPC/NSSL HWT SFE

Hazardous Weather Testbed 2020 Spring Forecast Experiment

22 hr reflectivity forecasts Valid 22z 27 May 2020

EMC, NSSL physics variations

04 June 2020 • 29

EMC Data Assimilation

Data processed and plotted at NOAA NSSL/NWS SPC • Part of the NOAA Hazardous Weather Testbed

UFS Webinar

SAR Testing

Regional FV3 Testing in SPC/NSSL HWT SFE

04 June 2020 • 30

Data processed and plotted at NOAA NSSL/NWS SPC • Part of the NOAA Hazardous Weather Testbed

May 2020 CONUS RAOB Verification Wind RMSE

04 June 2020 • 33

UFS Webinar • SAR Testing

*Material courtesy of (EMC)

UFS Webinar SAR Data Assimilation

NORR COMPANY

Prototyping Grid Configurations for 12-km/3-km SAR FV3 DA

SAR FV3 (81 combined vertical levels) SAR FV3 (81 smoothed vertical levels)

3-km SAR FV3 Forecast Grid 3-km GSI Analysis Grid

UFS Webinar SAR Data Assimilation

Interfacing Data Assimilation with the SAR

Analysis

Background

Difference

Soil temperature adjustments (lower right) in SAR FV3 derived from atmospheric analysis increments (upper right) through GSI

UFS Webinar SAR Data Assimilation

UFS Webinar RRFS Data Assimilation

-5 000

3 333

-1.667

Ongoing Radiance DA Development

- Hourly assimilation of radiances
- Same data as GFS Using radiance data through Regional **ATOVS Retransmission Service**
- (RARS) to reduce the data latency
- Bias corrections for all satellite instruments are estimated within the regional system

UFS Webinar **RRFS** Data Assimilation

Preliminary evaluation from limited samples

- 5 days with one 6 hour DA cycles (00z or 12z) each days in Dec 2019
 StaticGSI: 3DVar (static background error only)
 HybRegEns: Hybrid DA with 0.25 weight for static part, 20 (3 km) cycled
 FV3SAR ensembles (two way, re-centered ensemble).
 HybMixEns: Using 3 km ensembles from HybRegens and pre-set global ensembles from GFS/GDAS system.
- Conventional and satellite data are assimilated Control variables: stream function, velocity potential, surface pressure, temperature, and normalized humidity

Ongoing Radiance DA Development

Parameterization	RAP/HRRR Suite	FV3CAM (RRFS) Baseline Physics
Microphysics	Aerosol-aware, radiation-coupled Thompson	Aerosol-aware, radiation-coupled Thompson
Surface/Boundary Layer (PBL)	Scale-aware MYNN	Scale-aware MYNN
Short/Longwave Radiation	RRTMG	RRTMG
Land Surface Model (LSM)	RUC (9 level)	Noah-MP (contingent upon RUC-like modifications including increased levels)
Cumulus	Scale-aware Grell/Freitas (GF)	N/A

Additional microphysics and boundary layer schemes will be used in multi-physics configurations

RRFS Domain Development

Draft RRFS Domains – NOT Finalized

NWP CONUS Plus Domain (blue) HRRR Domain (orange)

UFS Webinar RRFS CONUS Domain

CAM Attributes and Verification Metrics

Forecast Field	Application	Vertical Attribute	Temporal Attribute	Validation Source	Skill Scores
Temperature	Environmental	Column	Instantaneous		
Specific Humidity	Environmental	Column	Instantaneous		DMSE BIAS
Wind	Environmental	Column	Instantaneous		DMSE DIAS
CAPE/CIN	Environmental	Mixed, Most- Unstable, Surface-Based	Instantaneous	RAOBs	RMSE, BIAS RMSE, BIAS RMSE, BIAS
Storm Relative Helicity	Environmental	0-1, 0-3 km AGL	Instantaneous		DMSE BIAS
Temperature	Environmental	2-m	Instantaneous		DMSE DIAS
Dewpoint	Environmental	2-m	Instantaneous	METARs	RMSE BIAS
Wind	Environmental	10-m	Instantaneous		DMSE DIAS
Downward Shortwave Radiation	Air Quality/Energy Land Surface	Surface	Instantaneous/Average	ARM, Surfrad (Oak ridge, ameriflux), USCRN	RIVISE, DIAS
Ceiling	Aviation	Column	Instantaneous	METADo	
Visibility	Aviation	Surface	Instantaneous	ME IARS	
Echo Top Height	Aviation	Column	Instantaneous	MRMS Echo Top	CSI, BIAS, FSS, POD,
Simulated Reflectivity	Severe	Composite	Instantaneous	MRMS Mosaic Composite	FAR, AUR, Performance
Updraft Helicity	Severe	2-5, 0-3 km AGL	Hourly Maximum	Storm Reports	Diagram
Precipitation	Precip	Surface	1-hr, 6-hr, 24-hr Totals	Stage IV 1-hr, 6-hr, 24-hr Precip	

Will be using METplus verification for pre-operational decision making Test plan under development

- SAR has many tunable parameters
- Part of challenge is that SAR solutions appear fairly sensitive to parameter changes more than current CAMS.
- Example of Sensitivity: Two Warn on Forecast cases
- Take hourly DA generated analyses from WRF-ARW WoFS and initialize the SAR with those analyses.
- Run 4 hour forecasts with 18 members for both models
- Use "same" physics in both ensembles-> HRRR suite
- Simple test: Change the SAR time step
 - WoFs runs using dt=5 and 15 sec
 - SAR runs with 5, 15, 30, 60 sec time step
 - Mean values are generated from obj-based storm identification and represent the average W over 27 pts.
- SAR updrafts are sensitive to choice in **time step....**
- Why are SAR updrafts 50-75% larger than current operational CAM with same mesoscale environment and same time step?

Effects of Horizontal Resolution on Simulated Convection

UFS Webinar • CAM Science Challenges

Sub-Grid (Unresolved) Clouds

Explicit (Resolved) Clouds/Precipitation

RAP and HRRR use the Thompson microphysics scheme with 5 hydrometeor types

UFS Webinar CAM Science Challenges

Subgrid-Scale (SGS) Clouds

- **Key Idea**: thermodynamic variability within a grid volume may produce small areas of saturation (*clouds*)
- Variability is subgrid (unresolved): *must be parameterized*

Key Changes for RAPv5 / HRRRv4:

- Mixing ratio (q_{cldwat} and q_{cldice}) of SGS clouds:
 - Removed constraints on q_x for stratiform SGS
 - Increased coverage of convective SGS via MYNN mass-flux approach
- Cloud fraction:
 - Stratiform: slightly reduced, except in high grid-scale RH
 - Use a modified Chaboreau and Bechtold (2002, 2005) scheme exclusively; discontinue use of Xu and Randall (1996)
- Effective radii ($r_{\rm e}$) of SGS clouds:
 - Water: use Turner et al. (2007)
 - \circ Ice: use Mishra et al. (2014)

UFS Webinar CAM Science Challenges

Improved Subgrid-Scale Cloud Representation

UFS Webinar • CAM Science Challenges

Storm Motion Biases

Courtesy of Corey Potvin NOAA/NSSL

Relative to MRMS radar observations (upper left) Modeled storms move too quickly in sheared environments Modeled storms don't deviate rightward (enough) from mean shear vector

nam3km (N=202)

UFS Webinar • CAM Science Challenges

UFS Webinar CAM Science Challenges

UFS Webinar

HRRR Data Assimilation System (HRRRDAS) Collaboration from NSSL, EMC, NCAR and OU

04 June 2020 • 52

Lateral boundary perturbations

18 members re-initialized at 09z and inserted at 10z 18 members re-initialized at 21z and inserted at 22z

HRRRDAS

HRRRDAS: Case Study 12 UTC 21 June 2019

Valid Fri 06/21/2019 12:00 UTC MRMS Reflectivity (dBz)

Valid Fri 06/21/2019 12:00 UTC MRMS Reflectivity (dBz)

UFS Webinar

HRRRDAS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

- Only high-resolution (~3 km) ensemble in NCEP operations
- 8 members combine time-lagging, varying initial condition sources, and mixedphysics approaches
- 00 and 12 UTC runs with 36-h forecast length
- Future update will include HRRR members, quantile-mapping bias correction and variable smoothing

Member	ICs/LBCs	Microphysics	PBL	Grid spacing	Vert. levels	Time step
HRW NSSL	NAM/NAM -6h	WSM6	MYJ	3.2 km	40	19.1 s
HRW NSSL -12h	NAM/NAM -6h	WSM6	MYJ	3.2 km	40	19.1 s
HRW ARW	RAP/GFS -6h	WSM6	YSU	3.2 km	50	18.9 s
HRW ARW -12h	RAP/GFS -6h	WSM6	YSU	3.2 km	50	18.9 s
HRW NMMB	RAP/GFS -6h	Ferrier-Aligo	MYJ	3.2 km	50	6.6 s
HRW NMMB -12h	RAP/GFS -6h	Ferrier-Aligo	MYJ	3.2 km	50	6.6 s
NAM CONUS Nest	NAM/NAM	Ferrier-Aligo	MYJ	3 km	60	6.25 s
NAM CONUS Nest -12h	NAM/NAM	Ferrier-Aligo	MYJ	3 km	60	6.25 s

HREFv2 CONUS membership

UFS Webinar

HREF

48 h HREFv3 membership (00/12Z CONUS)

Courtesy of Matt Pyle's MEG HREFv3 MEG presentation from Sept. 26th, 2019

UFS Webinar

HREF

- <u>Add</u> regional 3 km FV3 and HRRR runs as new members (with time-lagged members of each), and <u>eliminate</u> the HiresW-NMMB members.
- Likely product additions and modifications:
 - The Ensemble Agreement Scale (EAS) probability type will be introduced for select PQPF and snow products
 - Probabilities of QPF exceeding Average Recurrence Intervals (e.g., a 100 year event) and FFG (1 h, 3 h, and 6 h periods)
 - Local Probability Mean (LPM) for QPF
 - Extend forecast range from 36 h to 48 h

Courtesy of Matt Pyle's MEG HREFv3 MEG presentation from Sept. 26th, 2019

- During the five-week 2019 HWT Spring Forecasting Experiment (SFE), experimental 0000 UTC CAM ensembles were subjectively compared to the HREFv2.1 (with HRRR)
- The HREF was consistently rated higher than other CAM ensembles for severe weather guidance in subjective evaluations (i.e., highest mean,
- median, and mode ratings)

Courtesy of Israel Jirak and HWT collaborators from SPC and NSSL

1200 UTC

Goal: Produce real-time, 9-member ensemble forecasts initialized from HRRRDAS during testbeds, for the purposes of getting community feedback and initializing WoFS.

- Real-time 9-member single-dycore HRRR ensemble (HRRRE) 0-36 hr probabilistic forecasts using stochastic physics parameter perturbations as shown in the HWT evaluation (top-middle panel) for a high-impact severe weather period on 20-21 May 2019
- Overlaid storm-reports of tornadoes (red), high-winds (blue) and hail (green)
- Operational baseline CAM ensemble (HREFv2.1) shown in the left column

Data processed and plotted at NOAA NSSL/NWS SPC • Part of the NOAA Hazardous Weather Testbed

UFS Webinar • CAM Science Challenges

Rainfall Frequency in HRRRE and HREF

UFS Webinar CAM Science Challenges

UFS Webinar • CAM Science Challenges

Ensemble Forecast Challenge: Spread vs Error

04 June 2020 • 63

UFS Webinar

CAM Science Challenges

HRRRE and HREF QPF Performance vs Stage-IV QPE Summer 2019, F18-F24, n=47

Aircraft prepbufr counts, RAP v RAP early, 14 Nov 12-13Z

ACARS wind verification vs. forecast length

Forecast Length (hours) 1 h 0 h 2 h 3 h 3.5 Vert. avg. RMS Error (m/s) 3 2.52 Early obs dump (+05) 1.5 Standard obs dump (+26) Diff: Early – standard 0.5 0 30 150 60 90 120 180 0 h 3 h 1 h 2 h

Forecast Length (hours)

Fig. 1: Observation counts for aircraft as a function of 5 minutes observation time bins for the regular RAP observation files (blue, dump time at +26 mins.) and the early RAP observation files (red, dump time at +5 mins.) for 2 successive hours (12z and 14z, 13 November 2019).

Fig. 2: Vertically averaged upper-air wind RMS errors (relative to ACARS data) for HRRR forecasts using the standard observation file dump (red curve, +26 mins.) vs. the early observation file dump (blue curve, +5 mins.) for the final analysis. Hourly forecasts from 4-16 November 2019 included in this comparison.

UFS Webinar CAM Science Challenges

- Stand-Alone Regional (SAR) FV3 Capability
- No Data Assimilation
- Extended Schmidt Gnomonic (ESG) Grid
- 3-km, 12-km, 25-km configurations
- GFS/NAM/RAP/HRRR GRIB2 Initializations
- Physics Suites:
 - RRFS baseline (Thompson microphysics, MYNN turbulence and surface layer, Noah-MP land surface scheme, and RRTMG for longwave and shortwave radiation)
 - GFSv15

28 August 2020: Code slush for preliminary pre-release testing

30 September 2020: Code freeze for final testing

- 16 October 2020: Documentation finalized
- 30 October 2020: Target release ready
- 2 November 2020: Announce release to public

<u>https://cires-ufs.atlassian.net/wiki/spaces/CAMAT/overview</u> <u>https://github.com/ufs-community/ufs-srweather-app</u> <u>https://forums.ufscommunity.org/forum/short-range-weatherconvection-allowing-application</u>

FV3-CAM Timeline \rightarrow Rapid Refresh Forecast System

<u>Rapid Refresh Forecast System \rightarrow To replace HREF, HRRR, NAM + nests, HiResWs</u>

Timeline may be revised as development matures/progresses