

The state of the UFS July 2024

POCs Hendrik L. Tolman (UFS) and Maoyi Huang (EPIC) Hendrik.Tolman@NOAA.gov and Maoyi.Huang@NOAA.gov

NOAA / NWS / Office of Science and Technology Integration and NOAA / OAR / Weather Program Office

The Unified Forecast System (UFS)

The Unified Forecast System (UFS) is software stack of community-supported component environmental models and (coupling) tools that are intended for use in both operations and research at NOAA and by a broader community. Many of the tools have been developed in collaboration with NCAR. Note that the UFS is different from unitary modeling systems such as the IFS of the European Center for Medium range Weather Forecasting or the UM of the UK MetOffice, who allow only one model per type in the table below. The UFS allows for multiple component models as needed to cover both operational and research mission

source public CI/CD dashboards to bring

transparency to the modeling community.

Innovation: The Atmospheric River team

faster than the legacy implementation.

2024 has over 200 participants signed up.

modeling across multiple sectors.

300% year over year.

and workshops continue to grow at a rate of

–UIFCW is hosted by EPIC and has received over 500

participants working on differing aspects of community

UFS powerd by EPIC

•Success Story: Academic Install was completed partnering George Mason University with EPIC. Students and professors can now build and run UFS applications on Frontera.

-We are partnering with other academic institutions with an important goal of making a universal academic set of install scripts to support a vast academia community.

•HPC Access has been a key concern to researchers getting access to resources to run numerical models. Our "Apache Packer" scripts allow you to build out the supported applications on non Tier-1 machines.

needs. The table below shows presents the software stack on July 15, 2024.

Туре	Model	Description	Open	Open	Com	License	Originates from	Governance
			source rate 1	Science (low) to {	strength 5 (high)			
Infrastructure	ESMF	Earth System Modeling Framework.	5	3	5	<u>https://github.com/esmf- org/esmf/blob/develop/ LICENSE</u>	https://earthsystemmodeling.org/organi zation/	https://earthsystemmodeling.org/organi zation/
	NUOPC	"Dictionary" to uniformly implement NUOPC	5	3	4	N/A	Started as grass-roots effort by NOAA / NRL / USACE supporting waves / coastal / ocean modeling.	This effectively becomes a "cap" on each component model, governed by its community.
	CMEPS / CDEPS	Coupler / mediator for ESMF - NUOPC coupling	5	4	4	Unknown	CMEPS is associated with NOAA-NCAR MOA 2019-2023. DMEPS is an NCAR extension.	Was joined NOAA/NCAR through the 2019-2023 MOA. MOA is being re- negotiated.
	ССРР	Unified infrastructure for physics in atmospheric models. Includes physics options.	5	4	5	<u>Apache License,</u> <u>Version 2.0</u>	Joining previous EMC and NCAR efforrts under MOA.	Team governance, not formalized.
	METplus	Model Evaluation Tools	5	3	5	https://dtcenter.org/co mmunity- code/metplus/terms- use	https://dtcenter.org/community- code/metplus	METplus Advisory Board.
	UPP	Unified Post Processor	5	3	5	<u>https://github.com/NOA</u> <u>A-</u> <u>EMC/UPP/blob/develo</u> p/LICENSE.md	https://epic.noaa.gov/unified-post- processor/	Mainly EMC
	NCEP libs /	There about 20+ libraries that	5	2	2	GNU Lesser General	NCEP	Mainly EMC
	UFS Workflow	There is no single UFS	1	1	1	Public License V3.0	Developing a library of workflow	
DA	JEDI	workflow yet. Joint Effort for Data Assimilation Integration, community Data	4	2	4	<u>Apache License,</u> <u>Version 2.0</u>	modules rather than a single workflow. Joint Center for Satellite Data Assimilation (JCSDA, intergovernmental	JSCDA
Atmosphere	FV3	Assimilation Effort Finite Volume Cubed Sphere	5	3	3	<u>GNU Lesser General</u>	collaboration) GFDL (as full mdel)	GFDL
	MPAS	The Model for Prediction Across Scales	5	3	3	<u>Public License</u> <u>https://github.com/MPA</u> <u>S-Dev/MPAS-</u> <u>Model/blob/master/LIC</u>	Los Alamos National Laboratory (COSIM) and the National Center for Atmospheric Research.	NCAR has primary responsibility for the atmospheric model.
	ССРР	See infrastrucure section	5	4	5	Apache License, Version 2.0	See infrastrucure section	See infrastrucure section
Ocean / Coasta	НҮСОМ	Hybid Coordinate Ocean Model	4	3	3	MIT license	Nation Oceanographic Partnership PRogram project between NAvy and NOAA.	Developed in collaboratiopn with NRL and broader comunity.
	MOM6	Modular Ocean Model 6	5	5	5	<u>GNU Lesser General</u> <u>Public License</u>	GFDL	Lead by GFDL
	ADCIRC	Finite elemt depth-Integrated storm surge model	5	5	5	<u>GNU LGPL</u>	UNC Chapel Hill Institute of Marine Sciences and UND Dept of Civil Engineering and Geological Sciences	<u>See https://github.com/adcirc/adcirc,</u> <u>https://adcirc.org/</u> , and <u>https://wiki.adcirc.org/Main_Page</u>
	SLOSH	A 2-D explicit, finite-differencing storm surge model	3	1	2	Private GitHub repository with custom license	NWS/OSTI/MDL/Decision Support Division	Code maintained at MDL and computational grids developed at NHC and MDL.
	ROMS	The Regional Ocean Modeling System (ROMS) i	5	5	5	MIT License	Rutgers University, University of California Los Angeles and contributors worldwide.	<u>See</u> https://en.wikipedia.org/wiki/Regional Ocean Modeling System
	FVCOM	The Finite Volume Community Ocean Modeling System (FVCOM).	4	5	4	<u>MIT/X</u>	University of Massachusetts Dartmouth and Woods Hole Oceanographic Institution.	See http://fvcom.smast.umassd.edu/wiki/ind ex.php/About
	SCHISM	SCHISM (Semi-implicit Cross- scale Hydroscience Integrated System Model)	5	5	5	Apache-2.0	SCHISM modeling system is a derivative work from the original SELFE model (v3.1dc as of Dec. 13 , 2014).	See https://ccrm.vims.edu/schismweb/
Hydro	NWM	National Water Model (NWM)	2	2	2	Terms and Conditions	WRF-Hydro is research code developed by NCAR. The NWM is an operational configuration of WRF-Hydro.	N/A
	NextGen	The Next Generation Water Resources Modeling Framework (NextGen)	5	5	3	<u>Under Revision (current license linked)</u>	Original development by the Office of Water Prediction beginning in February 2020	TBD, see https://github.com/NOAA- OWP
Sea Ice	CICE	Sea ilce Model	5	5	5		CICE started as a proprietary DOE model.	There is a formal governance with oversight, working with a community of the willing.
	MOM6	Optional ice model closely embedded in MOM6 ocean model.	5	5	5		See MOM6 ocean model.	See MOM6 ocean model.
Wind Waves	WAVEWATCH	Wind wave modeling framework	5	5	5	GNU LGPL v3, 29	NOAA/NWS (Delft University fo Technology, GSFC)	Informal devepment group that started with a NOPP project.
Land	Noah-MP	Noah-MP (multiple parameterization) land surface	5	5	4	https://github.com/NCA R/noahmp?tab=Licens	NCAR	Noah-MP Strategic Planning Committee.
	LM4	GFDL Land Model v4				<u>e-1-ov-file#readme</u> <u>GNU license</u>	GFDL	https://github.com/ufs-community/ufs- weather-model/pull/2146
Atmospheric	GOCART	Atmospheric aerosols				Apache license	NASA Goddard	
composition and air quality			5	4	4	(https://github.com/GE OS- ESM/GOCART/blob/ma in/LICENSE)		
	AQM	Air quality	5	4	5	MIT license (https://github.com/US EPA/CMAQ/blob/main/l icense.md)	EPA	For AQM see https://github.com/NOAA-EMC/AQM
	HYSPLIT	Atmospheric dispersion	2	3	3	N/A	NOAA OAR ARL	NOAA OAR ARL is the primary manager
Space Weather	WAM-IPE	Coupled Whole Atmosphere Model-Ionosphere Plasmasphere Electrodynamics Forecast System	5	4	2		WAM from EMC and SWPC, IPE from SWPC	SWPC is the primary repository manager (https://github.com/NOAA- SWPC)
	ENLIL	Solar wind and Coronal Mass Ejection propagation	1	1	1	No formal licensing in place	WSA from NASA Goddard Enlil from George Mason and CU CIRES	SWPC manages the operational fork of these two models

•The material being covered in tutorials, conference, and workshops is continuing to diversify as AI, DA, and RRFS capability are being supported by EPIC.

Big Picture UFS progress

Simplifying the production suite: reduce the complexity of the Production Suite, measured as the reduction in the number of major applications (baseline is 26 in 2016)

• 70% planned, 23% achieved

Building the community: reducing the cost of setting up GFS modeling system outside of the NOAA

• Was \$15M+ for GFS, now 1 person 1 day on your computer

• NSF starting to support UFS (6 projects funded in 2023)

Improving Operations: Evidence driven, community teams

• Much larger teams supporting development

NOAA planning: 10 Year NOAA Modeling Strategy (UFS, JEDI)

Glossary for Applications:

S2S: Subseasonal to Seasonal; GST: Graduate Student Test; MRW: Medium Range Weather; SRW: Short range Weather; UPP: Unified Post Processor; GFS: Global FS; GEFS: Global Ensemble FS; SFS: Seasonal FS; HAFS: Hurricane FS; RRFS: Rapid Refresh FS; NWPS: Nearshore Wave PS; GLWU: Great Lakes Waves; RTMA: Real Time Mesoscale Analysis; URMA: Unrestricted RMA; GODAS: Global Ocean DA System; SECOFS: Southeast Coast Operational FS; STOFS: Surge and Tide Operational FS; NECOFS: Northeast Coast Operational FS

UFS Applications

The software stack is used to build applications to fit operational and research missions. We make a distinction between

		UFS Releases (Apps)					Foundatinal to Foundational Foundational MRW and SRW component component						F	Production Suite < "Rainbow diagram target er											Prototypes + products outside of Productions Suite																				
			UFS	EPIC		EPIC				EPIC		EPIC		EPIC		N	WS	NV	VS NV	VS N	WS N	IWS	NV	NS N	WS N	WS N	NS N	WS NW	VS	NWS/ NOS	NWS +								NWS	NWS	NOS	NOS	NOS	NOS	NC
			S2S	MRW		SRW		(wm)	(wm)	Weather	Model	Land DA		UPP		C	FS	GEF	s sfs	HAF	FS R	RFS	Hys	plit NW	PS GL	WU ENL	IL RT	MA URM	IA	COASTAL	Coupled	Global Syste	n (UFS We	ather Model)					GODAS	3D RTMA	Hurricane Surge	SECOFS	ROMS RTs	STOFS- S 3D AK	ЗТО 21
Туре	Model		GST	1.0.0	1.1.0	1.0.0	2.0.0	2.1.0	2.2.0	2.1.0	2.2.0	1.1.0	1.2.0	10.1.0	11.0.0	,	v15 v1	l6 v1	2 v1	1 v	v1	v1	v2 8.0	0.5 v [.]	1.4 \	v2	v	3.0 v3.	.0	ACT	v1	v2	v3	v4 v5	v6	v7	v8	HR	reanaly- sis		v0	v0	v0	v0	
Infrastructure	ESMF		2019	2020/03	2020/10	2021/03	2022/6 2	022/11	2023/10	2022/11	2023/10	2023/05	2023/12	2022/05	2022/6	20	19/06 202	1/3 202)/09 TB	3D 202	23/06 2	2025 20	2028? 202	2/12	202	23/02	202	5/06 2025	5/06	2019	2	2	2	022 2022	2	2	2	=v8	2	2	2	2	2	2	
	NUOPC		2	-2	-2	-2	-2	2	2	2	2	-2	-2	-2	-2		2 2		2	2	2	2	2 -	.2	.2	-2 -2 -	.2	2 2	,	2	2	2	2	2 2	2	2	2	2	2	2	2	2	2	2	2
	CMEPS /				-	-	-	-	-	-		-			-									-	-	-	-											_							
	CCPP		2	-2	-2	-2	-2	2	2	2	2	-2	-2	-2	-2		-2		2	2	2	-2	-3 -	.2 .	.2 .	-2 -	.2 -	-2	2	-2	1	1	1	1 2	2	2	2	2	2	-2	2	2	2	2	2
	METplus		2	2	2	2	2	2	2	2	2	-2	-2	-2	-2		1 2	2 (2	2	2	2	2 -	.2 .	-2 -	-2 -	-2	2 2	2	-2	1	1	1	2 2	2	2	2	2	2	2	-2	-2	-2	-2	-2
	UPP		0	0	0	0	2	2	2	2	2	0	0	-2	-2		0		2	2	0	2	2 -	.2 .	.2 .	-2 -	2	2 2	2	-2	1	1	1	1 1	1	1	1	1	0	2	-3	-3	-3	-3	-3
	NCEP libs /		0	2	2	2	2	2	2	2	2	0	0	2	2		2 2	2 2	2	2 ,	2	2	2 -	.2 .	.2 .	-2 -	2	2 2		-2	1	1	1	1 1	1	1	1	1	0	2	-3	-3	-3	-3	-3
	Spack Stack UFS Workflow		1	1	1	2	1	2	2	- 1	1	2	2	2	2		0 0		2	- ,	0	0	-3 -	.2 .	.2 .	-2 -2	.2			-2	2	1	2	2 2	2	1	- 1	2	1	-3	-3	-3	-3	-3	
DA	JEDI				·				·								<u> </u>	<u></u>			°			-	2	2	2										·	·	·	0	9				
			0	0	0	0	0	0	0	0	0	2	2	-2	-2		0 () (2	2	0	0	2 -	-2	1	1 -	2	0 0		-2	0	0	0	0 0	0	0	0	0	2	2	-2	-2	-2	-2	-2
Atmosphere	FV3		2	2	2	2	2	2	2	2	2	-2	-2	-2	-2		2 2	2 2	2	2	2	2	-2 -	.2 .	·2 ·	-2 -	-2	2 2	2	-2	2	2	2	2 2	2	2	2	2	-2	2	-2	-2	-2	-2	-2
			-1	-1	-1	-1	-1	-1	-1	-1	-1	-2	-2	-2	-2		-1 -	1 -	-1	1 -	-1	-1	-3 -	·2 ·	-2 ·	-2 -	·2 -	1 -1	1	-2	-1	-1	-1	-1 -1	-1	-1	-1	-1	-2	-1	-2	-2	-2	-2	-2
Ocean / Coasta	HYCOM		2	2	2	2	2	2	2	2	2	-2	-2	-2	-2		2 2	2 (2	2	2	2	2 -	-2 -	-2 -	-2 -	-2	2 2	:	-2	1	1	1	2 2	2	2	2	2	2	2	-2	-2	-2	-2	-2
occarry occusia	MOM6		-1	-2	-2	-2	-2	-2	-2	2	2	-2	-2	-2	-2		0 0) () -1	1 :	2	-2	-2 -	.2 .	-2 -	-2 -	-2 -	2 -2	2	-1	-1	-1	-1	-1 -1	-1	-1	-1	-1	-1	-2	-1	-1	-1	-1	-1
	ADCIRC		2	-2	-2	-2	-2	-2	-2	2	2	-2	-2	-2	-2		0 () () 2	2	0	-2	-2 -	.2 .	-2 -	-2 -	-2 -	2 -2	2	-1	2	2	2	2 2	2	2	2	2	2	-2	-1	-1	-1	-1	-1
	SLOSH		-1	-2	-2	-2	-2	-2	-2	-1	-1	-2	-2	-2	-2	- 8	-3 -	3 -	2 -1	1	-3	-2	-2 -	.2 .	-3 -	-2 -	-2 -	2 -2	2	2	-1	-1	-1	-1 -1	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	2
	ROMS		-1	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2		-2 -2	2 -	2 -1	1 -	-2	-2	-2 -	.2 .	.3 .	-2 -	-2 -	2 -2	2	-1	-2	-2	-2	-2 -2	-2	-2	-2	-2	-2	-2	-1	-1	-1	-1	-1
	FVCOM		-1	-2	-2	-2	-2	-2	-2	-1	-1	-2	-2	-2	-2	- 6	-3 -	3		1	-2	-2	-2 -	.2	.3	-2 -	2	2 -2	2	-1	-2	-2	-2	-2 -2	-2	-2	-2	-2	-1	-2	-1	-1	-1	-1	-1
	SCHISM		-1	-2	-2	-2	-2	-2	-2	-3	-3	-2	-2	-2	-2	- 6	-3 -3	3 -	2 -1	1	-3	-2	-2 -	-2	-3	-2 -	2	2 -2	2	-1	-1	-1	-1	-1 -1	-1	-1	-1	-1	-2	-2	2	2	-1	2	
Hydro	NWM		-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2		-2 -2	2 -:	2 0) -	-3	-2	-2 -	.2 .	-2 -	-2 -	-2 -	2 -2	2	-2	-2	-2	-2	-2 -2	-2	-2	-2	-2	-2	-2	0	1	0	0	c
	NextGen		-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2		-2 -2	2 -	2 0) -	-3	-2	-2 -	.2 .	-2 -	-2 -	-2 -	2 -2	2	-2	-2	-2	-2	-2 -2	-2	-2	-2	-2	-2	-2	0	0	0	0	0
Sea Ice	CICE		2	-2	-2	-2	-2	-2	-2	2	2	-2	-2	-2	-2		0 0) () 2	2 -	-2	-2	-2 -	-2 -	-2 -	-3 -	-2 -	2 -2	2	-2	1	1	1	1 2	2	2	2	2	2	-2	-2	-2	-2	1	-2
	MOM6		2	-2	-2	-2	-2	-2	-2	2	2	-2	-2	-2	-2		-2 -2	2 () -1	1 -	-2	-2	-2 -	.2 .	.2 .	-2 -	-2 -	2 -2	2	-2	-1	-1	-1	-1 -1	-1	-1	-1	-1	2	-2	-2	-2	-2	-1	-2
Wind Waves	WAVEWATCH III		0	-2	-2	-2	-2	-2	-2	2	2	-2	-2	-2	-2		0 2	2 2	3	3	2	-2	-3 -	·2 ·	·1	2 -	-2	2 2	2	2	0	0	0	2 2	2	2	2	2	-2	1	2	2	2	2	2
	SWAN		-2	-2	-2	-2	-2	-2	-2	-1	-1	-2	-2	-2	-2		-2 -	1 -	2 0) -	-1	-2	-2 -	-2	2	-1 -	-2 -	2 -2	2	-1	-2	-2	-2	-2 -2	-2	-2	-2	-2	-2	-2	-1	-1	-1	-1	-1
Land	Noah-MP		1	1	1	1	1	1	1	1	1	2	2	-2	-2		1		2	2	0	-1	2 -	-2 -	-2 -	-2 -	-2	0 0)	-2	1	1	1	1 1	1	2	2	2	-2	-2	-2	-2	-2	-2	-2
	LM4		-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-2	-2		-1 -	1 -	ı -1	1		-2	-2 -	·2 ·	-2 -	-2 -	-2 -	2 -2	2	-2	-1	-1	-1	-1 -1	-1	-1	-1	-1	-2	-2	-2	-2	-2	-2	-2
Atmospheric composition	GOCART		0	-2	-2	-2	-2	-2	-2	2	2	-2	-2	-2	-2		0	1	-3	3 -	-2	-2	-2 -	·2 ·	·2 ·	-2 -	-2 -	2 -2	2	-2	0	0	0	0 0	0	1	2	2	-2	-2	-2	-2	-2	-2	-2
and air quality	For AQM see https://github.c		0	-2	-2	-2	-2	-2	-2	2	2	-2	-2	-2	-2		0 -	1 -	0) -	-3	0	2 -	.2 .	-2 .	-2 -	-2 -	2 -2	2	-2	0	0	0	0 0	0	-1	-1	-1	-2	-2	-2	-2	-2	-2	-2
	EMC/AQM																																												
Space	WAM-IPE		-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	_	-2 -:	2 -	2 0		-2	-2	-2 2	2 .	-2 .	-2 -	-2 -	2 -2	2	-2	-2	-2	-2	-2 -2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
Weather	ENLIL		-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2		-2 -2	2 -	2 0		-3	-2	-2 -	.3 .	-2 -	-2 -	-2 -	2 -2	2	-2	-2	-2	-2	-2 -2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
			-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2		-2 -	2 -	2 0) -	-3	-2	-2 -	.3 .	2 .	-2	2 -	2 -2	2	-2	-2	-2	-2	-2 -2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2

1. Applications released by EPIC

- 2. Applications in the NOAA Production Suite
- 3. R&D Applications

The number and corresponding color legend in the figure on the right are

- -3 Use in Application still TBD -2 Not intended for use in App -1 Other UFS component used Intended but not yet included Red Partially included
- Fully included

Dark Grey Light Grey Yellow Light Green Dark Green