

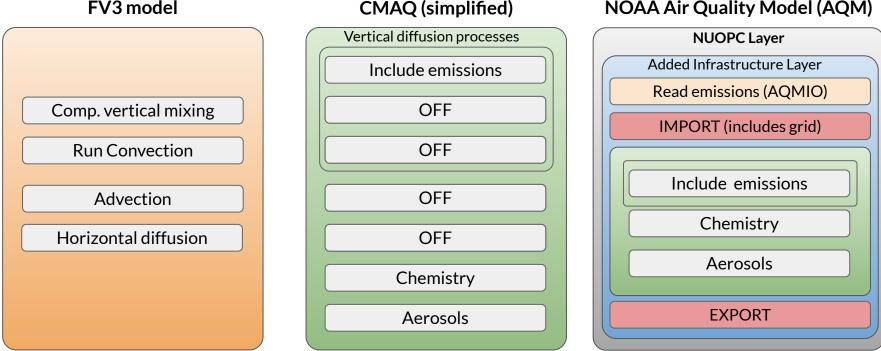
Environment and Climate Change Canada Environnement et Changement climatique Canada

Ongoing Research and Developments for NOAA's Next Generation Air Quality Model

Patrick C. Campbell^{1,2,3}, Wei Li^{1,2,3}, Beiming Tang^{1,2,3}, Youhua Tang^{1,2,3}, Barry Baker³, Irena Ivanova^{1,2}, Wei-Ting Hung^{1,2,3}, Zachary Moon^{3,4}, Chi-Tsan Wang¹, Daniel Tong¹, B.H. Baek¹, Siqi Ma¹, Paul Makar⁵, Fanglin Yang⁶, Jianping Huang^{6,7}, Ivanka Stajner⁶, and Raffaele Montuoro⁶

¹George Mason University, ²Cooperative Institute for Satellite Earth System Studies, ³NOAA Air Resources Laboratory, ⁴Earth Resources Technology, Inc., ⁵Environment Climate Change Canada, ⁶NOAA Environmental Monitoring Center, ⁷I.M. Systems Group Inc., Rockville, MD, USA

UFS Webinar: April 11th, 2024

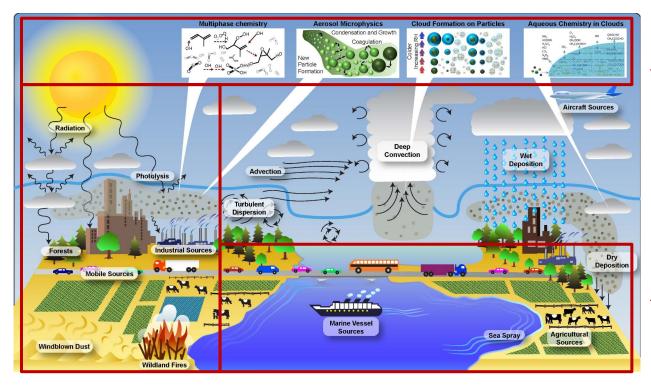

Outline

- 1. NOAA's UFS-AQM component and major science updates.
- 2. Moving beyond the "big-leaf" model in the UFS-AQM.
- 3. Updating the anthropogenic emissions in the UFS-AQM.

NOAA's Next-Generation Online-Coupled Air Quality Model

The Unified Forecast System (UFS) is a community-based, coupled, comprehensive Earth modeling system.

FV3 model



https://github.com/ufs-community

NOAA Air Quality Model (AQM)

NOAA's Current UFS Air Quality Model (UFS-AQM)

AQM Version 7 (AQMv7) Chemical Component: Based on the U.S. EPA's Community Multiscale Air Quality Model (CMAQ) <u>Version 5.2.1</u>. Version released in June 2017.

→ NOAA-ARL has updated the AQM chemical component from CMAQv5.2.1 to CMAQv5.4 (includes interim CMAQv5.3 updates)

→ Major code structure and scientific changes

Overview of Major Structural Changes to UFS-AQM

Inputs				DEP & Chem	Outputs
Environr variab		get_env_mod.f90 RUNTIME_VARS.F			
New namelists defined in aqm.rc		AE_cb6r5_ae7_aq.nml GC_cb6r5_ae7_aq.nml NR_cb6r5_ae7_aq.nml Species_Table_TR_0.nml CSQY_DATA_cb6r5_ae7_aq CMAQ_Control_DESID_cb6r5_a e7_aq.nml CMAQ_Control_DESID.nml CMAQ_Control_DESID.nml		VDIFF PHOT	O ₃ ELMO controlled: PM25at PM25ac
Updated tables		field_table_aqm.FV3_GFS_v16 diag_table_aqm.FV3_GFS_v16			
Meteorology		GRID_CRO_2D MET_CRO_2D MET_CRO_3D MET_DOT_3D OCEAN_1 LUFRAC	Gridded files are read through centralized	СНЕМ	PM25co PM25 AOD
DESID controlled emission streams	Grid	GR_EMIS_001 (NEXUS)	IO & XTRACT3		Other species
	Point	STK_EMIS_001 (PT3D_FIRE) STK_EMIS_002 (PT3D_STKS)		AERO	
	Online	WB_DUST (Fengsha scheme) SEASPRAY			

Li et al., 2024, GMD, in prep.

- Emission reading, mapping, and scaling are controlled in the Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module.
- Opening, description, extraction, and interpolation of the meteorological and emission variables are encapsulated in the centralized I/O (CIO) module.
- Introduction of the Explicit and Lumped air quality Model Output (ELMO) module is included that can synthesize the definition, calculation, and maintenance of individual or aggregate gas and particulate matter online, i.e., simplifies CMAQ output.

Overview of Major Scientific Changes to UFS-AQM

Major science updates from CMAQv5.2.1 \rightarrow v5.3+ \rightarrow CMAQv5.4

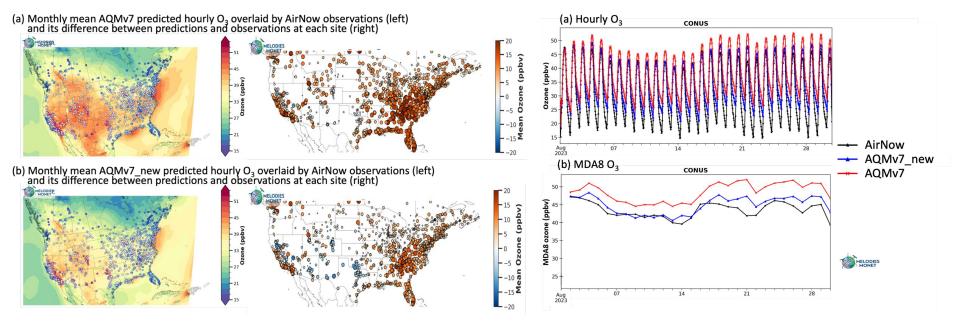
- Updated chemical mechanism (CB6r3 → <u>CB6r5</u>), photochemistry (e.g., halogen chemistry and DMS), and photolysis rates.
- Updated aerosol module (AERO6
 <u>AERO7</u>) and both inorganic and organic aerosol formation (anthropogenic species, monoterpenes, water uptake, etc.).
- Other updated processes (e.g., ozone and aerosol dry deposition, ammonia bidirectional fluxes, extended biogenic emissions options, etc.).
- Lead to significant changes in predictions of near-surface air quality, such as O₃ and PM_{2.5}.
- Summary of impact comparisons for updating from CMAQv5.2.1 to <u>CMAQv5.3+</u> and <u>CMAQv5.4</u>.

UFS-AQM Model Components and Configurations

Model attributes	Configuration	Reference	
Domain	North America Cantered on 50° N 118° W	N/A	
Horizontal resolution	13km	N/A	
Vertical resolution	64 levels from near the surface up to the top of the stratosphere	N/A	
Meteorological ICs and BCs	FV3GFSv16.3	https://nws.weather.gov/ (last access: 25 November 2023)	
Chemical ICs and BCs	Static monthly AM4 for gases and aerosol species and GEFS-Aerosol for dynamic smoke and dust	Horowitz et al. (2020); Tang e al. (2021)	
Microphysics	GFDL six-category cloud microphysics scheme	Lin et al. (1983); Lord et al. (1984); Krueger et al. (1995); Chen and Lin (2011, 2013)	
PBL physics scheme	sa-TKE-EDMF	Han and Bretherton (2019)	
Shallow and deep cumulus parameterization	SAS scheme	Han and Pan (2011); Han et al (2017)	
Shortwave and longwave radiation	RRTMg	Mlawer et al. (1997); Clough e al. (2005); Iacono et al. (2008)	
Land surface model	Noah land surface model	Chen and Dudhia (2001); Ek e al. (2003); Tewari et al. (2004)	
Surface layer	Monin-Obukhov	Monin and Obukhov (1954); Grell et al. (1994); Jimenez et a (2012)	
Anthropogenic emissions (CONUS)	Area Sources: NEIC2016v1 Point Sources: NEIC2016v1 with Briggs plume rise	NEI (2019); Briggs (1965)	
Anthropogenic emissions (Outside CONUS)	CEDSv2; HTAPv2.2; OMI-HTAP SO ₂ 2019	O'Rourke et al. (2021); Janssens-Maenhout et al. (2015); Liu et al., 2018	
Biogenic emissions	MEGAN2.1 driven by GFSv16 meteorology	Guenther et al. (2012)	
Wildfire emissions	RAVE with Sofiev plume rise	Li et al., (2022); Sofiev et al. (2012)	
Other Inline/Offline	FENGSHA windblown dust scheme	Fu et al. (2014); Huang et al. (2015); Dong et al. (2016)	
emissions	Sea spray emissions	Kelly et al. (2010); Gantt et al (2015)	

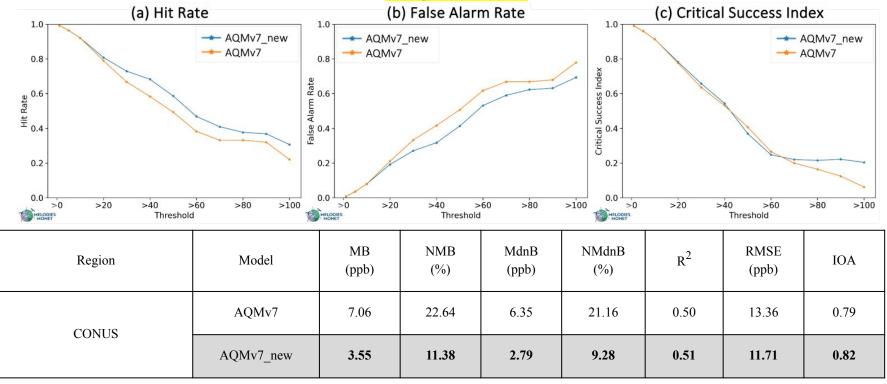
Major Configuration, Components, and Inputs

- Domain: North America @ 13x13 km horizontal resolution, 64 vertical levels.
- CCPP FV3-GFSv16.3 physics.
- Anthropogenic Emission: CEDSv2, HTAPv2.2, OMI-HTAP SO2 2019, and NEIC2016v1.
- Biogenic Emission: Inline MEGANv2.1
- Wildfire Emission: RAVE with Sofiev Plume Rise.
- Other Emission: Inline FENGSHA dust and inline sea-spray.

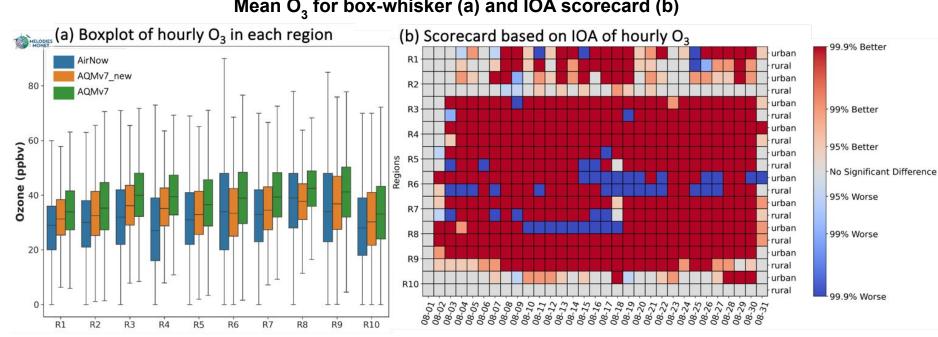

1-month warm start test simulation (August 2023), all conditions same except for CMAQv5.2.1 (AQMv7) vs. CMAQv5.4 update (AQMv7_new).

Impact of Updates on Near-Surface Ozone Predictions

August 2023


Mean O_3 for AQMv7 (a) and AQMv7_new (b)

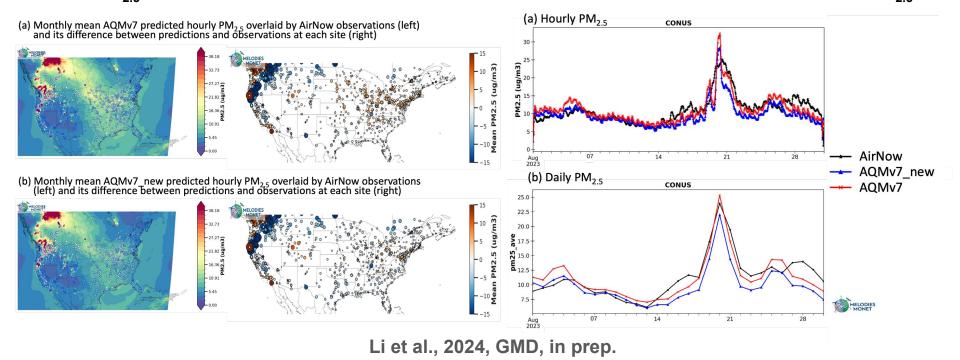
Time series of hourly (a) and MDA8 (b) O_3


Impact of Updates on Near-Surface Ozone Predictions

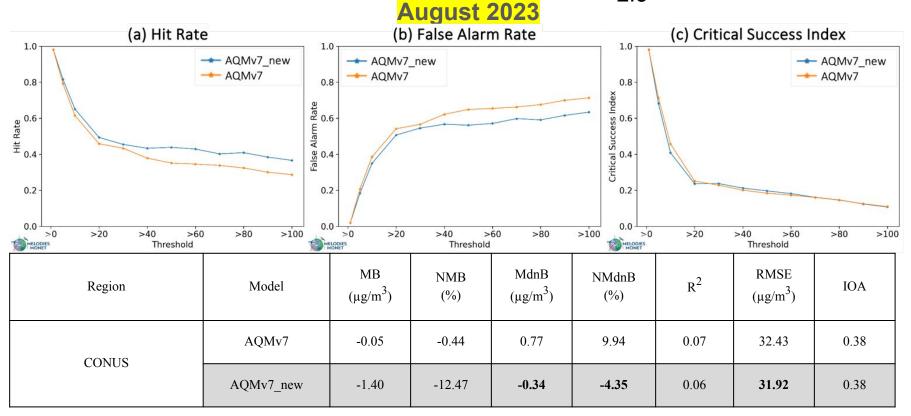
August 2023

Impact of Updates on Near-Surface Ozone Predictions

August 2023

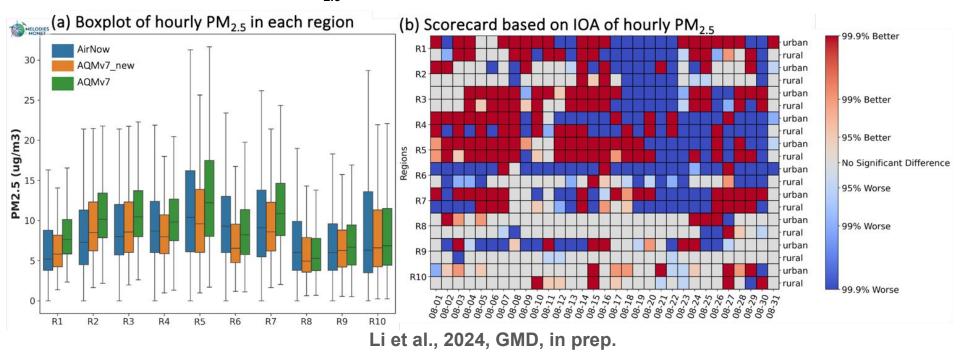

Mean O_3 for box-whisker (a) and IOA scorecard (b)

Impact of Updates on Near-Surface PM_{2.5} Predictions

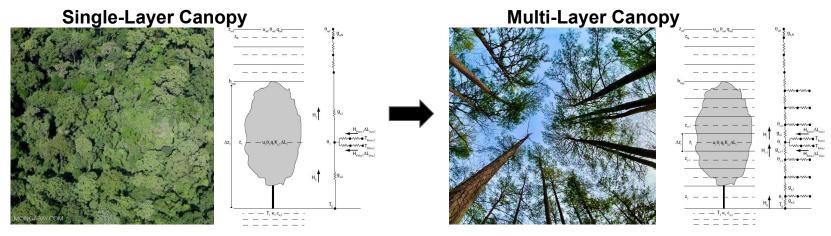

August 2023

Mean PM₂₅ for AQMv7 (a) and AQMv7_new (b)

Time series of hourly (a) and daily (b) PM₂₅

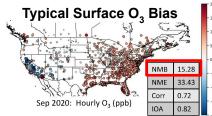


Impact of Updates on Near-Surface PM_{2.5} Predictions


Impact of Updates on Near-Surface PM_{2.5} Predictions

Mean PM_{2.5} for box-whisker (a) and IOA scorecard (b)

Beyond the "big-leaf" model in UFS-AQM


- The big-leaf approach is widely used in land, weather, climate, and air quality models, and typically represent the plant canopies as a homogeneous single layer without real vertical structure.
- Multi-layer canopy models are more costly, but can better represent the vertical variation of within canopy physical, dynamical, and chemical traits.

 Application of multilayer approaches to already costly air quality forecasting models with complex chemistry at regional scales presents further challenges (especially in UFS-AQM).

Beyond the "Big-Leaf" Model in UFS-AQM

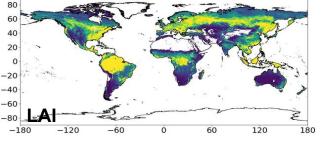
 Systematic ozone overpredictions in CTMs are linked to distinct vertical gradients of ozone measured within dense forest canopies of the U.S.
 Incorporate canopy parameters associated with photolysis and the attenuation of light (Makar et al., 2017):

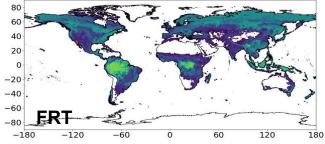
$$P(heta,z) = \mathrm{e}^{-rac{G(heta)\,\Omega(heta)\mathrm{LAI}(z)}{\cos(heta)}}$$
 .

Probability of beam penetration (i.e., fractional light penetration; Nilson, 1971; Monsi and Saeki, 1953) depends on LAI, leaf projection (G), clumping index (Ω), and solar zenith angle (θ).

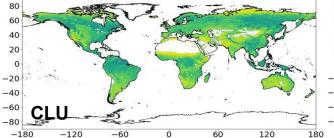
In-canopy <u>vertical diffusivity</u> is also modified based on the Raupach (1989) near-field theory for

turbulence within the forest canopy (Makar et al., 2017):

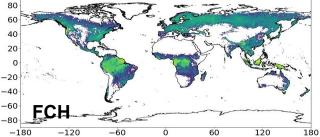

Modified turbulent diffusivity is scaled to 1st model layer and depends on variance in Eulerian vertical velocity (σ_w^2) and turbulent length scale (T_L)

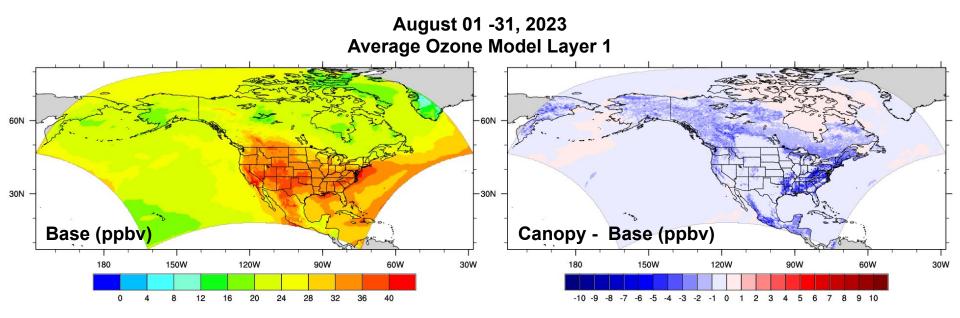

Note: Based on Makar et al. (2017), but not exact implementation.

$$K_{\mathrm{can}}(z) = rac{K_{\mathrm{mod}}(z_1)}{K_{\mathrm{est}}\left(rac{z_1}{h_{\mathrm{c}}}
ight)}K_{\mathrm{est}}\left(rac{z}{h_{\mathrm{c}}}
ight),$$

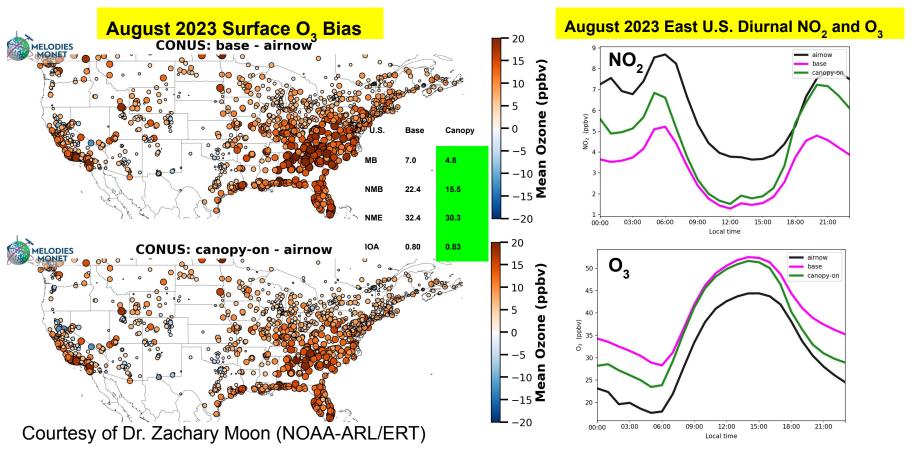

$$K_{\rm est}\left(\frac{z}{h_{\rm c}}\right) = \sigma_{\rm w}^2\left(\frac{z}{h_{\rm c}}\right)T_{\rm L}\left(\frac{z}{h_{\rm c}}\right),$$
$$T_{\rm L}\left(\frac{z}{h_{\rm c}}\right) = \frac{h_{\rm c}}{u^*}\left[0.256\left(\frac{z-0.75h_{\rm c}}{h_{\rm c}}\right) + 0.492\exp\left(\frac{-0.256z/h_{\rm c}}{0.492}\right)\right],$$

Updated 1-km Global Canopy Dataset for the UFS




Four major canopy parameters based on MODIS, VIIRS, and GEDI:

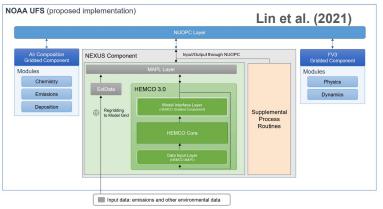
- Leaf area index (LAI)
- Canopy clumping index (CLU)
- Forest fraction (FRT)
- Forest canopy height (FCH)


https://github.com/noaa-oar-arl/canopy-app

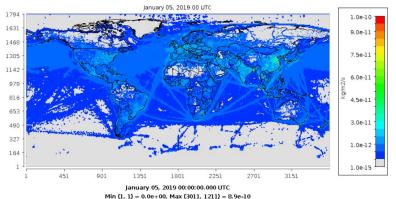
Impacts of Canopy Effects on Ozone Predictions

Maximum average grid cell ozone decrease of ~ - 10 ppb (-37% relative change).

Preliminary Canopy Effects on Model Performance


Updating Anthropogenic Emissions in UFS-AQM

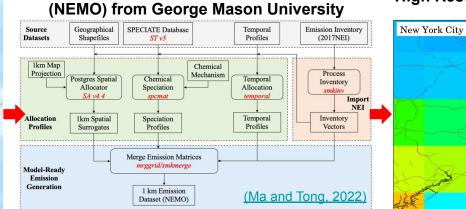
For the UFS-AQM domain, we use the <u>NOAA</u> <u>Emissions and eXchange Unified System (NEXUS)</u> component to online generate the following combined regional + global emissions:


- CEDSv2-2019 for all gases (SO₂ ocean only), OC, and BC (global)
- OMI-HTAP-2019 for SO₂ (land only)
- HTAPv2-2010 for PMC and PM_{2.5} (global)
- NEI2016v1 all gas and aerosols (CONUS Only)

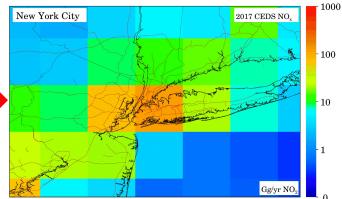
1) The current versions of NEI2016v1 and HTAPv2 are largely outdated.

2) All global emissions are monthly and have no daily or diurnal patterns.

NO2 Emissions



Use of a High Resolution 1-km Emissions Dataset


Neighborhood Emission Mapping Operation

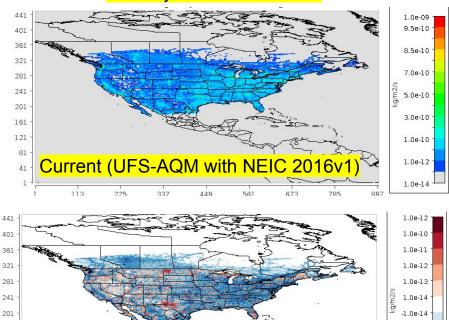
Geographical Information

High Resolution 1-km Emissions for 2019

A total of 108 spatial surrogates were prepared and applied over 9 anthropogenic emissions sectors, with the base emissions inventory based on the U.S. EPA National Emissions Inventory (NEI) for 2017 \rightarrow with sector updates to the 2019 modeling platform.

Use of NEXUS model to process the updated GMU 1-km 2019 emissions.

Example Nitric Oxide (NO) Emissions Updates


-1.0e-13

-1.0e-12

-1.0e-11

-1.0e-10

January 5: NO Emissions

Current)

673

785

561

449

(Updated w/ NEMO 2019 -

337

225

161

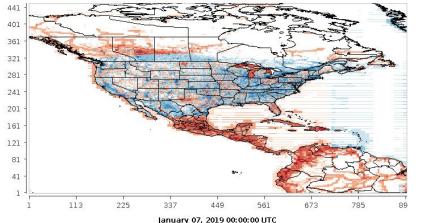
121

81

41

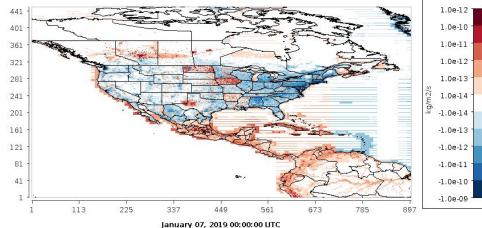
113

January 5: Total NO Emissions differences (mt)


Red = Total Increase Blue = Total Decrease	Current UFS-AQM (mt)	Updated NEMO (mt)	Percent Difference (%)
East	431	276	-36
West	192	114	-40
CONUS	624	390	-37
25- 20- 5000 0- 500 0- 5000 0	OFFREOOFERS	Annual total U.S. U.S. anthropogenic NO $_{\chi}$ emissions from the U.S. EPA EQUATES dataset.	

Example NO_2 and SO_2 Emissions Updates in UFS-AQM

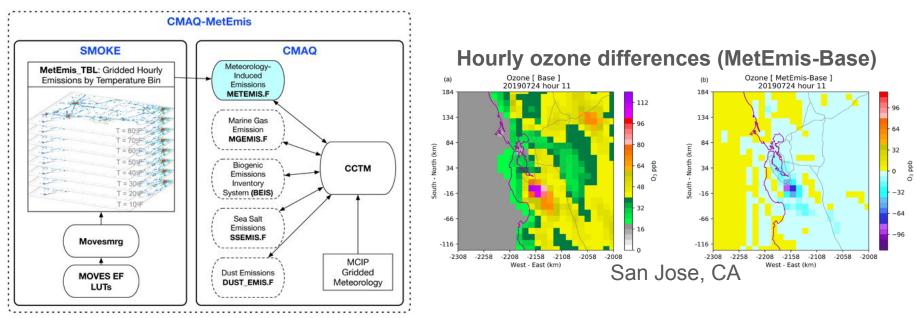
Full emissions updates include more recent regional and global inventories and the use of <u>CAMS-TEMPO</u> for improved temporal profiles for regions outside of CONUS.


- NEI2016v1 \rightarrow GMU/NEMO 1-km NEI2019 (Inside CONUS only)
- HTAPv2 2010 \rightarrow HTAPv3 2018 (Outside CONUS)
- Global No Diurnal for major gas emissions → CAMS-TEMPO gridded weights (outside CONUS)

Emissions Changes (Updated - Current)

NO2 Absolute Differences

SO2 Absolute Differences



Min (397, 190) = -9.8e-11, Max (656, 78) = 8.0e-11

Min (501, 288) = -1.3e-10, Max (801, 299) = 7.9e-09

Incorporating Weather-Dependent Emissions in UFS-AQM

Dynamic Meteorology-induced Emissions Coupler (MetEmis) development in the Community Multiscale Air Quality (CMAQ) model (<u>Baek et al., 2023</u>)

"Dynamically estimate weather-induced hourly gridded on-road mobile emissions in the UFS-AQM."

Progress and Future of the UFS-AQM

• Further evaluate CMAQv5.4 update and tests and hopeful future transition.

 Update and improve diagnostics (e.g. fluxes, dry deposition, process analysis) to better understand AQM scientifically → Comprehensive evaluation paper.

• Updating vegetative in-canopy codes and canopy inputs \rightarrow evaluate impacts.

• Integrate updated anthropogenic emissions and thoroughly test and evaluate impacts for the future of UFS-AQM predictions.