

ž

औ

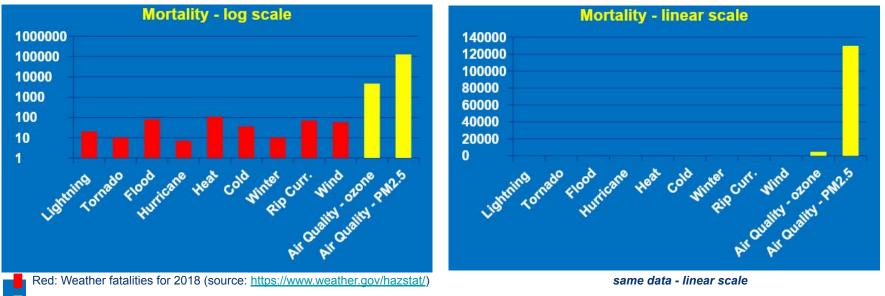
x

DOD

NATIONAL WEATHER SERVICE

The UFS-AQM Online Prediction System for Enhanced Fire Predictability

Jianping Huang (NOAA/NWS/NCEP/EMC)


Ivanka Stajner, Fanglin Yang, Jeffrey McQueen, Raffaele Montuoro (NWS/NCEP/EMC) Kai Wang, Ho-Chun Huang, Brian Curtis, Haixia Liu (EMC, Lynker), Chan-Hoo Jeon (EPIC) Barry Baker (OAR ARL) Youhua Tang, Patrick Campbell(ARL, GMU) Daniel Tong (GMU) Georg Grell (OAR GSL) Hongli Wang, Ruifang Li (GSL, CIRES) Gregory Frost, Rebecca Schwantes (CSL), Siyuan Wang (CSL, CIRES) James Wilczak (PSL) Irina Djalalova, Dave Allured (PSL, CIRES) Shobha Kondragunta (NESDIS STAR) Chuanyu Xu, Zigang Wei (IMSG, NESDIS STAR) Fangjun Li and Xiaoyang Zhang (SDSU)

UFS Webinar Series with STI-Modeling Program

April 11, 2024

Why: Societal Impacts of Weather and Air Quality

Yellow: Air Quality mortality for 2005 (source: Fann et al., Risk Analysis, 2012 https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1539-6924.2011.01630.x)

In the United States, annual mortality from poor air quality (over 100,000) substantially exceeds mortality from all other weather phenomena (530).

AQ prediction customers include: general public, state and local environmental agencies, EPA, CDC

Courtesy Ivanka Stajner, EMC

Societal Impacts of Wildfires and Trend of Burning Areas

COST

COST

\$168.8B

\$130.0B

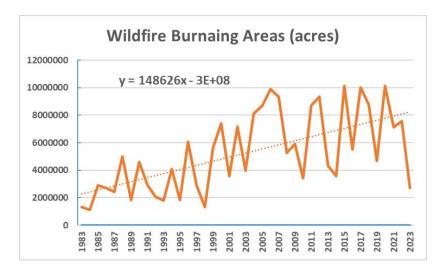
\$93.6B

\$73.5B

\$52.0B

FLOODING	
EVENT, YEAR	COST
1. Midwest flooding (2008)	\$12.1B
2. Louisiana flooding (2016)	\$10.8B
3. Mississippi River (2011)	\$3.5B
4. Houston flooding (2016)	\$2.9B
5. Texas/Oklahoma flooding (2015)	\$2.8B

WINTER STORMS


21	EVENI, TEAN	COST
1B	1. Central/Eastern storm (2015)	\$3.3B
8B	2. Freeze (2007)	\$2.6B
5B	3. Midwest/Eastern storm (2014)	\$2.4B
9B	4. Northeast storm (2018)	\$2.3B
8B	5. Groundhog Day blizzard (2011)	\$2.1B
	HURRICANES	

	W	ILD	FI	R	ES
TVEAD					

EVENT, YEAR	COST	EVENT, YEAR
1. Camp Fire, others (2018)	\$24.5B	1. Hurricane Katrina (2005)
	\$18.7B	2. Hurricane Harvey (2017)
3. Western wildfires (2007)	\$3.5B	3. Hurricane Maria (2017)
4. Western/Alaskan wildfires (2015)	\$3.3B	4. Hurricane Sandy (2012)
5. Western fires/Gatlinburg, TN (2016)	\$2.6B	5. Hurricane Irma (2017)

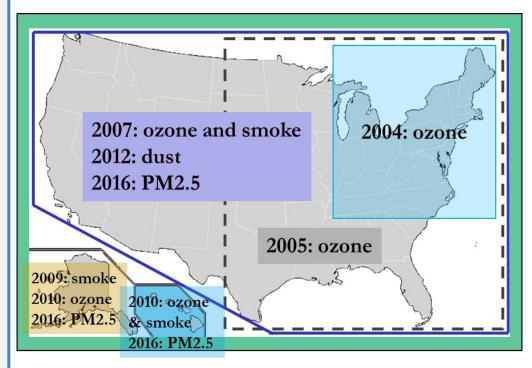
COST
\$33.9B
\$13.9B
\$11.6B
\$8.6B
\$7.7B

NOTE: Costs from hurricanes Dorian and Imelda (both Sept. 2019) and 2019 Midwest flooding events are still TBD. Costs are in CPI-adjusted dollars.

Source: National Interagency Fire Center

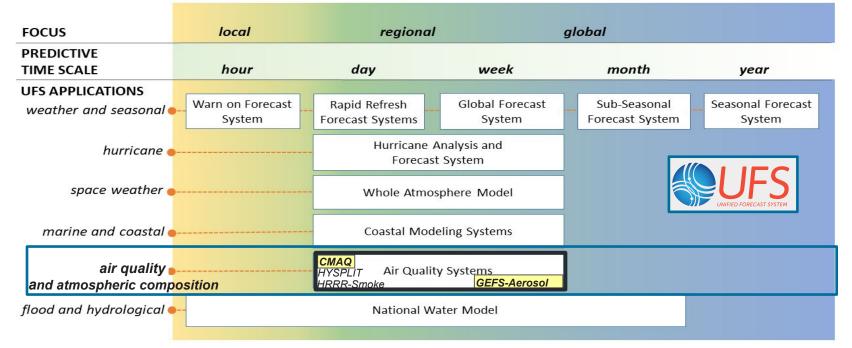
SOURCE: NOAA

InsideClimate News


Evolution of National Air Quality Forecast Capabilities

Prediction systems

- Chemistry model(s): EPA Community Multiscale Air Quality (CMAQ) model: gas-chemistry mechanisms (e.g., CB06) and aerosol module (e.g., Aero7)
- Meteorological models:
 - NOAA/NCEP North American Mesoscale (NAM) numerical weather prediction models: Eta, WRF/NMM, NMMB
 - NOAA/NCEP Global Forecast System (GFS)
- Meteorology-Chemistry Coupling: Offline


Forecast Guidance:

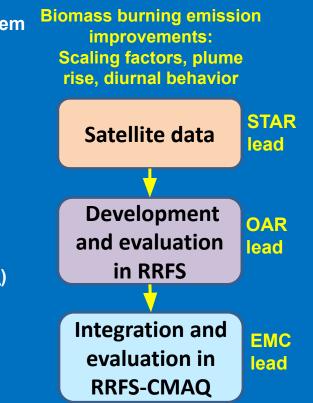
- O3, PM2.5, and smoke: nationwide
- Dust: CONUS

How: Unified Forecast System - https://ufscommunity.org/

- Unification of many previously disparate systems under a single framework
- Reliance on community modeling and community components

Community modeling has been the basis of operational air quality and atmospheric composition predictions: CMAQ (EPA), GOCART (NASA)

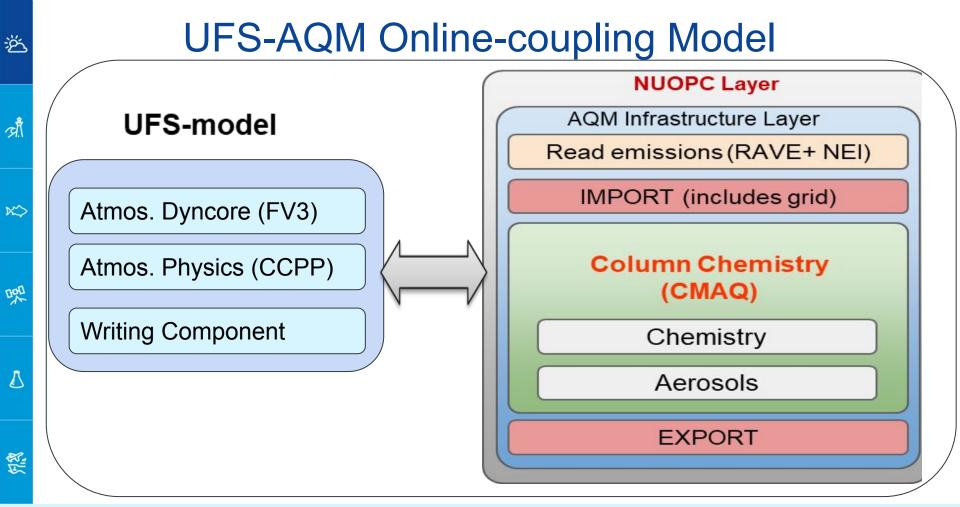
Transition from many operational modeling systems to UFS Applications



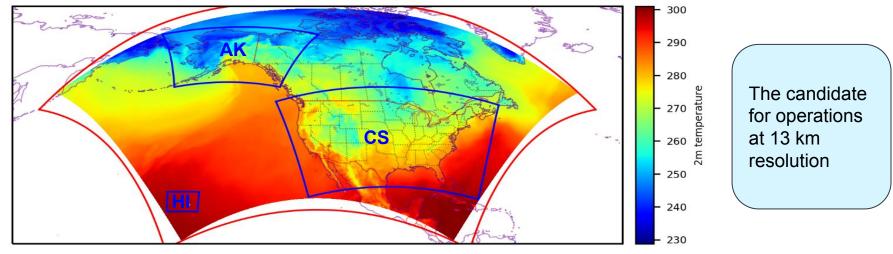
Global Weather, Waves & Global Analysis - GFS/ GDAS Global Weather and Wave Ensembles, Aerosols - GEFS Short-Range Regional Ensembles - SREF Global Ocean & Sea-Ice - RTOFS Global Ocean Analysis - GODAS Seasonal Climate - CDAS/ CFS	GODASy		GFSv17/ GEFSv13	Seasonal Re	eforecast Pro	duction	GFSv18/ GEFSv14/ SFSv1	Medium Range & Subseasonal Marine & Cryosphere Seasonal
Regional Hurricane 1 - HWRF	HAFSv1		HAFSv2		HAFSv3		HAFSv4	Hurricane
Regional Hurricane 2 - HMON Regional High Resolution CAM 1 - HiRes Window Regional High Resolution CAM 2 - NAM nests/ Fire Wx Regional High Resolution CAM 3 - RAPv5/ HRRR		RRFSv1		-	RRFSv2		RRFSv3/	Short-Range Regional
Regional HiRes CAM Ensemble - HREF Regional Mesoscale Weather - NAM Regional Air Quality - AQM	UFS-AQM					_	WoFSv1	& Regional Atmospheric Composition
Regional Surrace weather Analysis - RTMA/ URMA		3DRTMA/UR	MA v3		" v4		" v5	
Atmospheric Transport & Dispersion - HySPLIT	HySPLITv8		н	ySPLITv9		H	ySPLITv10	Air Dispersion
Coastal & Regional Waves - NWP5	NW	PSv1.4		RWPS	iv1	RWPSv2		Coastal
Great Lakes - GLWU	GLWUv1.2			GLWU	v2	GLWUv3		Lakes
Regional Hydrology - NWM		N	WMv3					Hydrology
Space Weather 1 - WAM/IPE Space Weather 2 - ENLIL					WAM/IPI	Ev2		Space Weather

AQM will be included in the short range regional application. Progress to date focuses on including CMAQ chemistry online in the regional UFS application.

Longer term plans: AQ Prediction with RRFS


- Unification around <u>high resolution</u> Rapid Refresh Forecast System (RRFS) short-term weather regional UFS application
- <u>CMAQ online in RRFS for wildfire impacts on air quality: PM2.5</u> and ozone
- Improved speciation and plume rise for <u>fire emissions</u>
- Improved <u>initialization</u>: assimilation of AOD and NO₂ data
- <u>Machine learning emulator</u> for air quality forecasts
- Coordinated with development of an RRFS smoke tracer for fire emissions and Fire Weather Index, including improved diurnal cycle and plume rise
- Models are evaluated using filed campaign data (e.g., <u>FIREX-AQ</u>) and AirNow observations.
- This is a highly coordinated NOAA effort among EMC, NESDIS-STAR, several OAR labs and university partners.

NATIONAL WEATHER SERVICE


Courtesy Ivanka Stajner, EMC Building a Weather-Ready Nation // 7

NATIONAL WEATHER SERVICE

AQMv7: a single North American domain (13 km)

Online-CMAQ::v7.0.2::tmp2m::

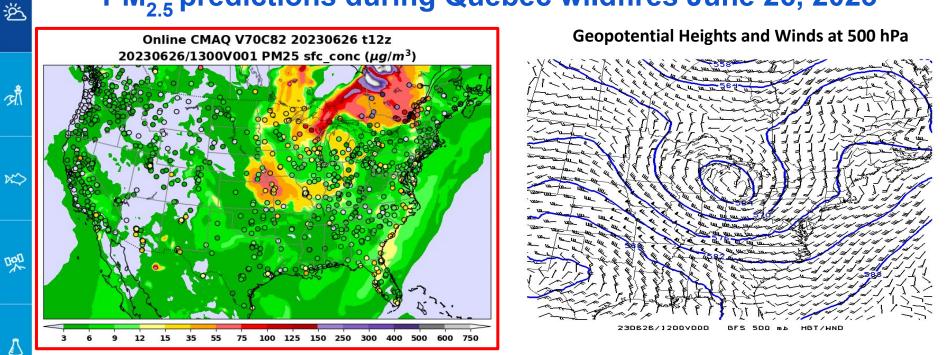
- UFS-AQM online prediction system has been running in near-real-time since July, 2022 over the North American large domain (red line) that covers all 3 current operational product domains: CONUS, AK and HI.
- Updates have been integrated into this near-real-time run.
- Physics Suite: CCPP for GFSv16
- Anthropogenic and biogenic emissions for the large domain (NEIC 2016v1 plus global)
- Hourly RAVE wildfire emissions and Sofiev plume-rise algorithm
- Updated LBC (AM4 + GEFS-Aerosols) and wet deposition
- Fengsha dust module

NATIONAL WEATHER SERVICE

- Bias correction
- Post-processing for 8h ozone maximum and daily average PM_{2.5}

Building a Weather-Ready Nation // 9

112


ž

औ

x

四日

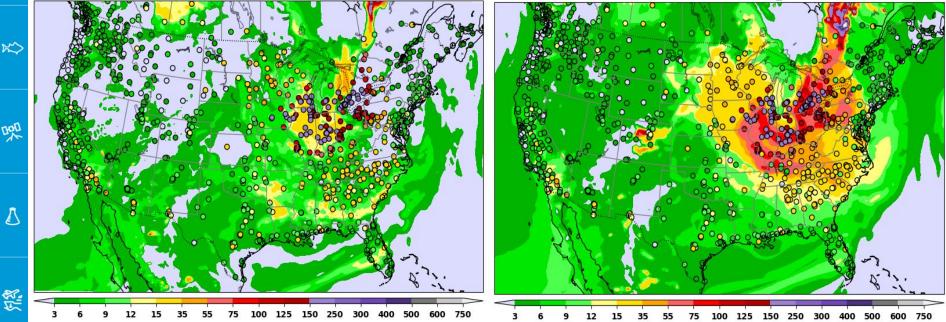
PM_{2.5} predictions during Quebec wildfires June 26, 2023

A storm system located northeast of the Great Lakes produced a counterclockwise wind, channeling the smoke produced by wildfires in Canada south into US, affecting air quality in the Midwest regions substantially. Evolution of predicted PM_{2.5} is shown for 72-hour predictions initialized on June 26, 2023 together with independent AirNow observations of PM_{2.5} (in filled circles). High values of PM_{2.5} were attributed to wildfires.

NATIONAL WEATHER SERVICE

12

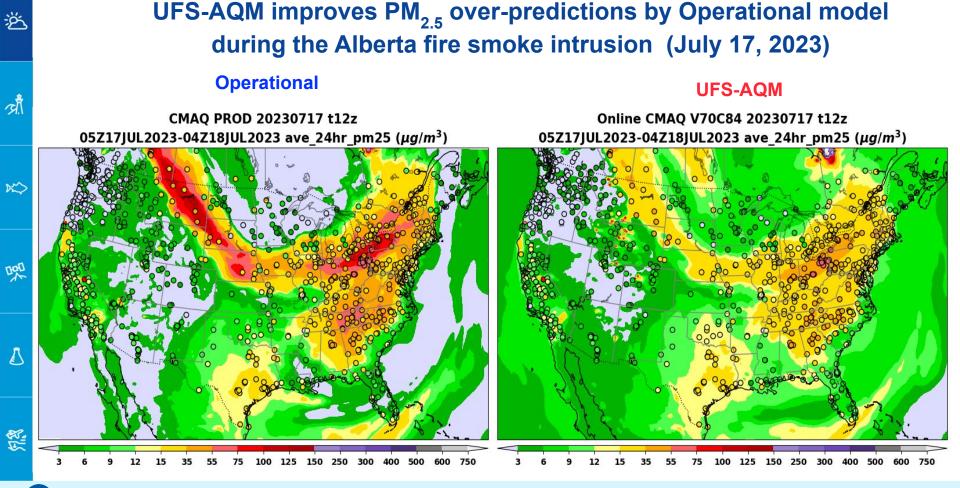
UFS-AQM improves PM_{2.5} prediction during Quebec Fires in June 2023


Operational

浴


त्रौ

CMAQ PROD 20230626 t06z 20230628/0600V048 PM25 sfc_conc (µg/m³) Online CMAQ V70C84 20230626 t06z 20230628/0600V048 PM25 sfc_conc (μg/m³)


UFS-AQM

UFS-AQM (Dev) improves PM_{2.5} during Quebec Fire 2023

NATIONAL WEATHER SERVICE

NATIONAL WEATHER SERVICE

Evaluation of UFS-AQM predictions: O₃ episodes ž **Operational** UFS-AQM CMAQ PROD 20230630 t12z Online CMAQ V70C84 20230630 t12z 05Z30JUN2023-04Z01JUL2023 max 8hr o3 (ppbV) 05Z30JUN2023-04Z01JUL2023 max_8hr_o3 (ppbV) K DOD 25 35 45 55 65 70 75 85 95 105 12 25 65 70 85 95 105

- Several O₃ exceedance events were observed over the affected region during dissipation stage of Quebec fire events.
- UFS-AQM predicts higher O₃ than the operational model over northeast coastal region such as Long Island Sound on June 30, 2023 in closer accordance with observations.

NATIONAL WEATHER SERVICE

ন্দ্রাঁ

12

AQMv7 (UFS-AQM) Evaluation Details

- Statistics and Example Cases from Retrospective runs
 - Time periods:
 - Summer: July-Aug. 2022
 - Winter: Dec. 2022, Jan. 2023
 - Month with intense fires: Sept. 2020
 - Products: Daily maximum 8-hour average O₃, 24-hr average PM₂₅
 - Statistics: time series, category performance
- Summary of Statistics

 Λ

ž

औ

x


DOD .

AQMv7 improves O₃ exceedance predictions in summer

- AQMv7 demonstrates higher Critical Success
 Index (CSI) values for daily max. 8-hour ave.
 O₃ for both the raw model (solid) and bias-corrected (BC) products (dashed) than
- AQMv7 exhibits enhanced predictive capabilities for O₃ exceedance events (≥70 ppb).

AQMv6.

OZMAX8_CSI_DAY2_fcst_init12Z_0701_0831 - CONUS

NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 16


ž

 Λ

112

AQMv7 improves 24-hr ave. PM_{2.5} in summer

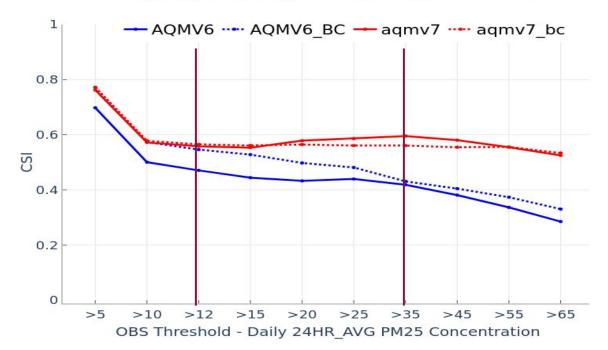
- AQMv7 demonstrates higher CSI values for 24-hr ave. PM_{2.5} for both the raw model and bias-corrected (BC) products (dashed) than AQMv6.
 - AQMv7 exhibits enhanced predictive capabilities for PM_{2.5} exceedance events (≥35 ug/m³).

PMAVE CSI DAY2 fcst init12Z 0701 0831 - CONUS

ž

औ

K


⊿

51.53

AQMv7 improves **PM**_{2.5} in fire season

- AQMv7 demonstrates higher CSI values for 24-hr ave. PM_{2.5} for both the raw model and bias-corrected (BC) products (dashed) than AQMv6.
 - AQMv7 exhibits enhanced predictive capabilities for PM_{2.5} exceedance events (≥35 ug/m³).

PMAVE_CSI_DAY2_fcst_init12Z_0901_0930 - CONUS

 \square

ž

औ

x

四

51.2

NATIONAL WEATHER SERVICE

Summary of AQMv7 Verification Statistics

ž

औ	Summer 2022							
791.1	Region	Parameter	Average Forecast	CSI	POD	FAR		
K)	CONUS	Ozone	Neutral	R: Neutral BC: Degraded	Improved	Neutral		
哭	East	PM2.5	Notably Improved	R: Neutral BC: Improved	Improved	Neutral		
۵	CONUS	Ozone	Notably Improved	Notably Improved	Improved	Neutral		
外梁	West	PM2.5	Notably Improved	Notably Improved	Improved	Improved		
NATIONAL WEATHER SERVICE R: Raw BC: Bias-Corrected Building a Weather-Ready Nation // 19								

Summary of AQMv7 Verification Statistics

ž

औ	Winter 2022								
791.1	Region	Parameter	Average Forecast	CSI	POD	FAR			
K\$	CONUS	Ozone	R: Degraded BC: Neutral	N/A	N/A	N/A			
哭	East	PM2.5	Neutral	Slightly degraded	R: Slightly improved BC: Neutral	R: Slightly degraded BC: Neutral			
Δ	CONUS	Ozone	R: Degraded BC: Slightly improved	BC: Improved	BC: Slightly improved	BC: Slightly improved			
<u>त्र</u> ाक्ष	West	PM2.5	Improved	Improved	Neutral	Slightly improved			
	NATIONAL WEATHER SERVICE R: Raw BC: Bias-Corrected Building a Weather-Ready Nation // 20								

Summary of AQMv7 Verification Statistics

ज्यौँ	September 2020 (Fire event)							
791.\	Region	Parameter	Average Forecast	CSI	POD	FAR		
K\$	CONUS	Ozone	R: Improved	R: Slightly degraded	R: Improved	R: Slightly degraded		
哭	East	PM2.5	R: Slightly Improved	R: Improved	R: Neutral	R: Slightly Improved		
⊿	CONUS	Ozone	R: Slightly Improved	R: Notably Improved	R: Notably Improved	R: Degraded		
外梁	West	PM2.5	R: Notably Improved	R: Notably Improved	R: Notably Improved	R: Slightly degraded		
	NATIONAL WEATHER SERVICE R: Raw Building a Weather-Ready Nation // 21							

_送 Summary

औ

KS

THE

 \mathbb{A}

12

- NOAA has developed an AQM online prediction system within the UFS framework to enhance representation of wildfire emissions and their impact on air quality predictions.
- The UFS-AQM, incorporating hourly RAVE data, significantly improved PM_{2.5} predictions compared to the operational system.
 - Moreover, the UFS-AQM exhibited superior performance in capturing O₃ episodes when compared to the operational model.
 - The UFS-AQM online systems, has been approved as a replacement for the existing operational air quality forecast system with implementation planned in May, 2024.

Next steps

- Will develop the RRFS-AQM online system (3km) to address prediction challenges over complex terrain and coastal regions.
- Will develop machine learning emulator to improve computational efficiency
- Will upgrade the CMAQ model along with anthropogenic emissions, refine wildfire emissions and plume rise algorithm, and utilize more advanced CCPP, data assimilation techniques as well as short-period training for bias correction to further improve wildfire and AQ predictions.